COMPARISON BETWEEN β-CYCLODEXTRIN AND MALTODEXTRIN AS ENCAPSULATED AGENTS OF VACUUM DRIED NUTMEG SEED OLEORESIN

Victoria Kristina Ananingsih, Bernadeta Soedarini, Sumardi Sumardi, Bong Y.A. Santoso, Bernardine Agatha Adi Konstantia

Abstract


Nutmeg is a spice plant native to Maluku, Indonesia. Nutmeg seed oleoresin is widely applied in the food and beverage industry because of its unique flavor and aroma. However, oleoresin has less stable properties to heat, oxygen, and light. Therefore, an encapsulation process is needed to protect oleoresin. The extraction of nutmeg seed oleoresin is carried out by ultrasonication method (Ultrasound Assisted Extraction) because of its lower energy consumption, shorter operating time, and can be carried out at low temperatures and pressures, making it suitable for the extraction of compounds that are sensitive to high temperatures. Nutmeg seed oleoresin encapsulation was carried out by the vaccuum drying method using two types of encapsulants (β-cyclodextrins and maltodextrin) at two treatment levels (7 grams and 10 grams) with two levels of stirring time (5 minutes and 15 minutes). This study aims to study the comparison between β-cyclodextrin and maltodextrin as encapsulated agents of vacuum dried nutmeg seed oleoresin.  Trapped oil was higher on β-cyclodextrin encapsulation than maltodextrin. Moreover, the antioxidant activity of microencapsulates was higher in β-cyclodextrin encapsulant than maltodextrin. The microencapsulate with the best trapped oil value was obtained in the treatment of 10 gram β-cyclodextrin with 15 minutes stirring time which produced 17.5% trapped oil. This treatment resulted in antioxidant activity of 87.06%.


Keywords


Nutmeg seed; Microencapsulation; Maltodextrin; β-cyclodextrin; Vaccuum drying

Full Text:

PDF

References


Álvarez-Henao, M. V., Saavedra, N., Medina, S., Jiménez Cartagena, C., Alzate, L. M., & Londoño-Londoño, J. (2018). Microencapsulation of lutein by spray-drying: Characterization and stability analyses to promote its use as a functional ingredient. Food Chemistry, 256, 181–187. doi:10.1016/j.foodchem.2018.02.05

Ananingsih, V. K., Soedarini, B., & Karina, E. (2020). Separation of Oleoresin from Nutmeg Using Ultrasound Assisted Extraction and Hexane as Solvent. In IOP Conference Series: Materials Science and Engineering, 854(1), 012029. doi:10.1088/1757-899X/854/1/012029. https://iopscience.iop.org/article/10.1088/1757-899X/854/1/012029/meta

Antasionasti, I., Datu, O. S., Lestari, U. S., Abdullah, S. S., & Jayanto, I. (2021). Correlation Analysis of Antioxidant Activities with Tannin, Total Flavonoid, and Total Phenolic Contents of Nutmeg (Myristica fragrans Houtt) Fruit Precipitated by Egg white. Borneo Journal of Pharmacy, 4(4), 301-310. https://doi.org/10.33084/bjop.v4i4.2497

Assagaf, M., Pudji, H., Chusnul, H., Sri, Y., & Supriyadi. (2013). Characteristics of microencapsulated nutmeg oleoresin: Determination of encapsulant Whey Protein Concentrate (WPC): Maltodextrin (MD) Ratio. Agritech, 33(1), 16-23. https://journal.ugm.ac.id/agritech/article/download/9562/7137

Baihaqi, I. W., Budiastra, S., Yasni, & Darmawati, E. (2018). Improvement of oleoresin extraction effectivenesss in nutmeg by Ultrasound Assisted Method. Jurnal Keteknikan Pertanian, 6 (3), 249-254. https://journal.ipb.ac.id/index.php/jtep/article/view/25524/16574

Chew, S.C., Tan, C.P, & Nyam, K.L. (2018). Microencapsulation of refined kenaf (Hibiscus cannabinus L.) seed oil by spray drying 2 using β-cyclodextrin/gum arabic/sodium caseinate. Journal of Food Engineering. doi https://doi.org/10.1016/j.jfoodeng.2018.05.016

Chiorcea‐Paquim, A., Enache, T. A., De Souza Gil, E., & Oliveira‐Brett, A. M. (2020). Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Comprehensive Reviews in Food Science and Food Safety. doi:10.1111/1541-4337.12566

Crini, G., S., Fourmentin, E., Fenyvesi, G., Torri, M., Fourmentin, & Morin-Crini, N. (2018). Cyclodextrin, from molecules to applications. Environmental Chemistry Letters, 16, 1361–1375. https://link.springer.com/article/10.1007/s10311-018-0763-2

Dadi, D.B., Emire, S.A., Hagos, A.D., & Eun, J.B. (2020). Physical and functional properties, digestibility, and storage stability of spray- and freeze-dried microencapsulated bioactive products from Moringa stenopelata leaves extract. Industrial Crops and Products, 156, 1-10. https://www.sciencedirect.com/science/article/abs/pii/S0926669020308086

Darniadi, S., Ifie, I., Luna, P., Ho, P., & Muray, B.S. (2020). Foam-mat-drying of blueberry juice by using trehalose-β-lactoglobulin and trehalose-bovine serum albumin as matrices. Food and Bioprocess Technolog,: 1-10. https://link.springer.com/article/10.1007/s11947-020-02445-6

Demarchi, S.M., Irigoyen, R. M. T., & Giner, S.A. (2018). Vacuum drying of rosehip leathers: Modelling of coupled moisture content and temperature curves as a function of time with simultaneous time-varying ascorbic acid retention. Journal of Food Engineering, 233, 9-16. https://doi.org/10.1016/j.jfoodeng.2018.03.027.

Duchene, D. & Bochot, A. (2016). Thirty years with cyclodextrin. International Journal of Pharmaceutics, 514 (1), 58-72. https://www.sciencedirect.com/science/article/abs/pii/S0 378517316306603

Ezhilarasi, P. N., Indrani, D., Jena, B.S., & Anandharamakrishnan, C. (2013). Freeze drying technique for microencapsulation of garcinia fruit extract and its effect on bread quality. Journal of Food Engineering, 117, 513-520. https://www.sciencedirect.com/science/article/abs/pii/S0260877413000228

Gupta, A., & Rajpurohit, D. (2011). Nuts and Seeds in Health and Disease Prevention Chapter 98: Antioxidant and Antimicrobial Activity of Nutmeg (Myristica fragrans). Academic Press. https://www.researchgate.net/publication/264972570_Antioxidant_and_Antimicrobial_Activity_of_Nutmeg_Myristica_fragrans

Hadian, Z., Maleki, M., Abdi, K., Atyabi, F., Mohammadi, A., & Khaksar, R. (2018). Preparation and characterization of nanoparticle β-cyclodextrin: Geraniol inclusion complexes. Iranian Journal of Pharmaceutical Research, 17 (1), 39-51. https://www.researchgate.net/publication/323186482_Preparation_and_Characterization_of_Nanoparticle_b-CyclodextrinGeraniol_Inclusion_Complexes

Huang, Y., Liang, M., Sun, L., Brennan, C. S., & Liu, D. (2020). Effect of microencapsulation on morphology, physicochemical properties and flavour profiles of solid yoghurt-flavoured bases. International Journal of Food Science and Technology. https://ifst.onlinelibrary.wiley.com/doi/abs/10.1111/ijfs.14896

Iqbal, M. J., Abbas, A., Rafique, H., Nawaz, M. F., & Rasool, A. (2018). A review paper on foam mat drying of fruits and vegetables to develop powders. MOJ Food Processing & Technology, 6 (6), 465-467. https://www.researchgate.net/profile/Muhammad-Iqbal-191/publication/329701165_A_review_paper_on_foam-mat_drying_of_fruits_and_vegetables_to_develop_powders/links/5c1653bd4585157ac1c69344/A-review-paper-on-foam-mat-drying-of-fruits-and-vegetables-to-develop-powders.pdf

Jayanudin, R, Renaldi, M. K., & Pangihutan. (2017). The influence of coating material on encapsulation efficiency of red ginger oleoresin. Jurnal Penelitian Kimia, 13 (2), 275-287. https://www.researchgate.net/profile/Jayanudin-Jayanudin/publication/325573589_THE_INFLUENCE_OF_COATING_MATERIAL_DIFFERENCE_AGAINST_ENCAPSULATION_EFFICIENCY_OF_RED_GINGER_OLEORESIN/links/5b441ea9a6fdcc66191406bf/THE-INFLUENCE-OF-COATING-MATERIAL-DIFFERENCE-AGAINST-ENCAPSULATION-EFFICIENCY-OF-RED-GINGER-OLEORESIN.pdf

Kanha, N., Regenstein, J.M., & Laokuldilok, T. (2020). Optimization of Process Parameters for Foam Mat Drying of Black Rice Bran Anthocyanin and Comparison with Spray- and Freeze Dried Powders. Drying Technology, 1-15. https://www.tandfonline.com/doi/abs/10.1080/07373937.2020.1819824

Layuk, P., Lintang, M. & Motulo, H.J. (2018). Effect of Coating Materials on Encapsulation Quality of Nutmeg Essential Oil. Repositori Publikasi Kementrian Pertanian. http://repository.pertanian.go.id/bitstream/handle/123456789/8863/PENGARUH%20BAHAN%20PENYALUT%20TERHADAP%20KUALITAS%20ENKAPSULASI%20MINYAK%20ATSIRI%20PALA%20-%20Payung%20Layuk%2c%20M.%20Lintang%20dan%20H.J.%20Motulo.pdf?sequence=1&isAllowed=y

Maesaroh, K., Kurnia, D., & Anshori, J.A. (2018). Comparison of Antioxidant Activity Test Methods of DPPH, FRAP, and FIC against Ascorbic Acid, Gallic Acid and Quercetin. Chimica et Natura Acta, 6(2), 93-100. http://jurnal.unpad.ac.id/jcena/article/view/19049/8961

Malik, T., Sharma, R., Panesar, P. S., Gehlot, R., Tokusoglu, O., Dhull, S. B., Vural, H., & Singh, A. (2021). Nutmeg Nutraceutical Constituents: In vitro and In vivo Pharmacological Potential. Journal of Food Processing and Preservation. doi:10.1111/jfpp.15848

Muchtadi, T. R., Ilma, A. N., Hunaefi, D., & Yuliani, S. (2015). Homogenization Technique And Preliminary Study Of Scaling Up Microencapsulation Of Palm Oil. Jurnal Teknologi Industri Pertanian, 25 (3), 248-259. https://journal.ipb.ac.id/index.php/jurnaltin/article/view/11792

Niu, X., Mo, Z., Yang, X., Sun, M., Zhao, P., Li, Z., Gao, H., Guo, R., & Liu, N. (2018). Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchimica Acta, 185(7). doi:10.1007/s00604-018-2859-6

Nurdjannah, N. (2007). Nutmeg Processing Technology. Badan Penelitian dan Pengembangan Pertanian. https://d1wqtxts1xzle7.cloudfront.net/38888733/HPSP-12-Ollop-Teknologi_Pengolahan_Pala-with-cover-page-v2.pdf?Expires=1633610809&Signature=TmEjP8N~H5vmQNVmmafdCKQIsX~NwVGOZxUxU4TE2IVsB4J45rS~LPPTMtuZ13H6bxF7C74Mo4p~26oZ7VZTGARbUvU-r1Qx5sRedc1rV4W7~wNgiL9GgGJppZ-UjF-hClqYzVBtFvwjtMKhEz1jwlFph14mt6LZ3EuQY7~RNHVvOjHQ4RQB8CUvfobOt1jy073mEGMU3ba1KHBI-0-VHRHuCHF5gfUZZ7VArjBQoEvUatwLAzt6roZOa9QJbr1i0DEfgYz~~HqS7OtWvMbqME3DdD9QZ~c3kSOwy1FBQbi1LjRra0H9dbBpCsqDUD-xSatfoPd-nl~QlUQDU6aiAg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Odubanjo, V.O., Olasehinde, T.A., Oyeleye, S.I., Oboh, G., & Boligon, A.A. (2017). Seed extracts from Myristica fragrans (Nutmeg) and Moringa oleifera (Drumstick tree) inhibits enzymes relevant to erectile dysfunction and metal-induced oxidative damage in rats' penile tissues. Journal of Food Biochemistry, 42(1), 1-9. DOI: 10.1111/jfbc.12452. https://doi.org/10.1111/jfbc.12452

Ozdemir, N., Bayrak, A., Tat, T., Altay, F., Kiralan, M., & Kurt, A. (2021). Microencapsulation of basil essential oil: utilization of gum arabic/whey protein isolate/maltodextrin combinations for encapsulation efficiency and in vitro release. Journal of Food Measurement and Characterization, 15(2), 1865–1876. doi:10.1007/s11694-020-00771-z. https://link.springer.com/article/10.1007/s11694-020-00771-z

Pinto, M.R., Paula, D.A., Alves, A.I., Rodrigues, M.Z., Vieira, E.N.R., Fontes, E.A.F., & Ramos, A.M.. (2018). Encapsulation of Carotenoid Extracts from Pequi (Caryocar brasiliense Camb) by Emulsification (O/W) and Foam Mat Drying. Powder Technology, 339, 10-38. https://www.sciencedirect.com/science/article/abs/pii/S0032591018307149

Rezvankhah, A., Z. Emam-Djomeh, & Askari, G. (2019). Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Drying Technology: An International Journal, 38(1-2), 1-25. https://www.tandfonline.com/doi/abs/10.1080/07373937.2019.1653906

Saffarionpour, S. (2019). Nanoencapsulation of Hydrophobic Food Flavor Ingredients and Their Cyclodextrin Inclusion Complexes. Food and Bioprocess Technology. doi:10.1007/s11947-019-02285-z

Santoso, B.D., Ananingsih, V.K., Soedarini, B., & Stephanie, J. (2020). Effect of Maltodextrin Variation and Homogenation Speed on the Physicochemical Characteristics of Encapsulated Nutmeg (Myristica fragrans Houtt) Butter by Vacuum Drying Method. Jurnal Teknologi Hasil Pertanian, 3 (2), 94-103. https://jurnal.uns.ac.id/ilmupangan/article/view/43576/27924

Sembiring, Bagem, B.R., Supriadi, & Ediningsih. (2020). Effectiveness of Drying Methods to Minimize Aflatoxin of Dried Nutmeg. Jurnal Litri, 26(1), 1-10. http://ejurnal.litbang.pertanian.go.id/index.php/jptip/article/download/10233/8973

SNI 01-3709-1995. (1995). Rempah-Rempah Bubuk. Badan Standardisasi Nasional Indonesia. http://repository.unika.ac.id/6790/8/03.70.0020%20Arief%20Nugroho%20Suanto%20LAMPIRAN.pdf

Taghizadeh, S.F., Rezaee, R., Davarynejad, G., Karimi, G., Nemati, S. H., & Asili, J. (2018). Phenolic profile and antioxidant activity of Pistacia vera var. Sarakhs hull and kernel extracts: the influence of different solvents. Food Measure, 12, 2138–2144. https://doi.org/10.1007/s11694-018-9829-x

Tan, K. P., H. E. Khoo, & A. Azrina. (2013). Comparison of Antioxidant Components and Antioxidant Capacity in Different Parts of Nutmeg (Myristica fragrans). International Food Research Journal, 20(3), 1049-1052. http://www.ifrj.upm.edu.my/20%20(03)%202013/3%20IFRJ%2020%20(03)%202013%20Azrina%20(381).pdf

Varan, G., C. Varan, N. Erdogar, A.A. Hincal, E. Bilensoy. (2017). Amphiphilic cyclodextrin nanoparticle: Review article. International Journal of Pharmaceutics, 1-13. https://pubmed.ncbi.nlm.nih.gov/28596142/

Verma, N.K., Singh, A.K., & Maurya, A. (2021). Myristica fragrans (Nutmeg): A Brief Review. EAS Journal of Pharmacy and Pharmacology, 3(5), 133-137. DOI: 10.36349/easjpp.2021.v03i05.004 https://www.easpublisher.com/media/features_articles/EASJPP_35_133-137.pdf

Vikas, Y. Sandeep, K., Braham, D., Manjusha, C., & Budhwar, V. (2018). Cyclodextrin Complexes: An Approach to Improve the Physicochemical Properties of Drugs and Applications of Cyclodextrin Complexes. Asian journal of Pharmaceutics, 2 (2), 394-409. http://asiapharmaceutics.info/index.php/ajp/article/view/2367

Warsito, M. F. (2021). A Review on Chemical Composition, Bioactivity, and Toxicity of Myristica fragrans Houtt. Essential Oil. Indonesian Journal of Pharmacy, 32(3), 304-313. https://doi.org/10.22146/ijp.1271

Yonata, D. (2020). Microencapsulation Studies In The Process Of Making Seaweed Flavoring: Effect of Seaweed Types and Coating Materials on Physical and Chemical Characteristics Flavoring. [Master Thesis, Unika Soegijapranata]. Repository Unika. http://repository.unika.ac.id/23404/

Yu, L.-P., Xing, C.-Y., Fan, S.-T., Liu, F., Li, B.-J., & Zhang, S. (2021). β-Cyclodextrin-Modified Polyacrylonitrile Nanofibrous Scaffolds with Breathability, Moisture-Wicking, and Antistatic Performance. Industrial & Engineering Chemistry Research, 60(28), 10217–10224. doi:10.1021/acs.iecr.1c01744

Yuliyati, T. B., Cahyono, E., & Wijayati, N. (2020). Enkapsulasi minyak kemangi (Ocimum basilicum) pada maltodekstrin dan β-siklodekstrin. Indonesian Journal of Chemical Science, 9(1), 11-16. https://journal.unnes.ac.id/sju/index.php/ijcs/article/view/33011




DOI: https://doi.org/10.24167/jfcn.v1i1.4681

DOI (PDF): https://doi.org/10.24167/jfcn.v1i1.4681.g2470

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Food, Culinary, and Nutrition