Pinch Analysis of Heat Exchanger Networks in A Simulated Milk Pasteurization Plant
Abstract
Keywords
Full Text:
PDFReferences
Alhanif, M., Sanyoto, G. J., & Widayat, W. (2020). Process Integration of Sulfuric Acid Plant Based on Contact Process. Frontiers in Heat and Mass Transfer, 15. https://doi.org/10.5098/HMT.15.17
Ayou, D. S., & Coronas, A. (2024). Comparative analysis of solar-powered heat pump systems for decarbonization of process heating and cooling applications: Case of milk pasteurization. Thermal Science and Engineering Progress, 53(January), 102774. https://doi.org/10.1016/j.tsep.2024.102774
Ayou, D. S., Hargiyanto, R., & Coronas, A. (2022). Ammonia-based compression heat pumps for simultaneous heating and cooling applications in milk pasteurization processes: Performance evaluation. Applied Thermal Engineering, 217(June), 119168. https://doi.org/10.1016/j.applthermaleng.2022.119168
Bakar, S. H. A., Hamid, M. K. A., Alwi, S. R. W., & Manan, Z. A. (2017). Sensitivity analysis of industrial heat exchanger network design. Chemical Engineering Transactions, 56, 1489–1494. https://doi.org/10.3303/CET1756249
Bousbia, A., Gueroui, Y., Boudalia, S., Benada, M., & Chemmam, M. (2021). Effect of High Temperature, Short Time (HTST) Pasteurization on Milk Quality Intended for Consumption. Asian Journal of Dairy and Food Research, 40(2), 147–151. https://doi.org/10.18805/ajdfr.DR-210
BPOM. (2023). Pedoman Penetapan Kategori Pangan 01.0 Produk-Produk Susu dan Analognya. In Book. Badan Pengawas Obat dan Makanan Republik Indonesia.
Harwood, W. S., Carter, B. G., Cadwallader, D. C., & Drake, M. A. (2020). The role of heat treatment in light oxidation of fluid milk. Journal of Dairy Science, 103(12), 11244–11256. https://doi.org/10.3168/jds.2020-18933
Hummel, D., Atamer, Z., Butz, L., & Hinrichs, J. (2024). Reproducing high mechanical load during industrial processing of UHT milk: Effect on frothing capacity. Journal of Dairy Science, 107(12), 10452–10461. https://doi.org/10.3168/jds.2024-25291
Indumathy, M., Sobana, S., Panda, B., & Panda, R. C. (2022). Modelling and control of plate heat exchanger with continuous high-temperature short time milk pasteurization process – A review. Chemical Engineering Journal Advances, 11(February), 100305. https://doi.org/10.1016/j.ceja.2022.100305
Kazantzi, V., Kazi, M. K., Eljack, F., El-Halwagi, M. M., & Kazantzis, N. (2019). A pinch analysis approach to environmental risk management in industrial solvent selection. Clean Technologies and Environmental Policy, 21(2), 351–366. https://doi.org/10.1007/s10098-018-1640-1
Kumar, T. R., Beiron, J., Marthala, V. R. R., Pettersson, L., Harvey, S., & Thunman, H. (2024). Combining exergy-pinch and techno-economic analyses for identifying feasible decarbonization opportunities in carbon-intensive process industry: Case study of a propylene production technology. In Preparation, 100853. https://doi.org/10.1016/j.ecmx.2024.100853
Lee, A. P., Barbano, D. M., & Drake, M. A. (2016). Short communication: The effect of raw milk cooling on sensory perception and shelf life of high-temperature, short-time (HTST)–pasteurized skim milk. Journal of Dairy Science, 99(12), 9659–9667. https://doi.org/10.3168/jds.2016-11771
Lee, J. H., Kim, Y. S., Jo, J. H., Cho, H., & Cho, Y. H. (2018). Development of economizer control method with variable mixed air temperature. Energies, 11(9). https://doi.org/10.3390/en11092445
Lim, S. Y., Benner, L. C., & Clark, S. (2019). Neither thermosonication nor cold sonication is better than pasteurization for milk shelf life. Journal of Dairy Science, 102(5), 3965–3977. https://doi.org/10.3168/jds.2018-15347
Liu, G., Carøe, C., Qin, Z., Munk, D. M. E., Crafack, M., Petersen, M. A., & Ahrné, L. (2020). Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. Lwt, 127(April), 109370. https://doi.org/10.1016/j.lwt.2020.109370
Łšmieja, M., Bogdański, P., & Czerwiński, K. (2018). Modelling of pasteurization process line in dairy industry in context of process control. AIP Conference Proceedings, 2029(July 2019). https://doi.org/10.1063/1.5066536
Mahar, A., Shaikh, M. S., & Bhatti, I. (2019). Performance analysis of plate type heat exchanger for milk pasteurization. AIP Conference Proceedings, 2119(July). https://doi.org/10.1063/1.5115370
Mailaram, S., Narisetty, V., Maity, S. K., Gadkari, S., Thakur, V. K., Russell, S., & Kumar, V. (2023). Lactic acid and biomethane production from bread waste: a techno-economic and profitability analysis using pinch technology. Sustainable Energy and Fuels, 7(13), 3034–3046. https://doi.org/10.1039/d3se00119a
Mandalagiri, L., Irawan, A., & Yani, S. (2021). Operability and Flexibility of Pinch Applications on Heat Exchanger Network in Chemical Industry – A Review. Journal of Chemical Process Engineering, 6(1), 36–47. https://doi.org/10.33536/jcpe.v6i1.897
Mohammad Rozali, N. E., Wan Alwi, S. R., Manan, Z. A., & Klemeš, J. J. (2016). Sensitivity analysis of hybrid power systems using Power Pinch Analysis considering Feed-in Tariff. Energy, 116, 1260–1268. https://doi.org/10.1016/j.energy.2016.08.063
Nadtochii, L., Orazov, A., Muradova, M., Bozymov, K., Japarova, A., & Baranenko, D. (2018). Comparison of the energy efficiency of production of camel’s and cow’s milk resources. Energy Procedia, 147, 510–517. https://doi.org/10.1016/j.egypro.2018.07.064
OECD. (2024). OECD-FAO Agricultural Outlook 2024-2033. In OECD-FAO Agricultural Outlook 2024-2033. https://doi.org/10.4060/cd0991en
Oğuz, C., & Yener, A. (2019). The use of energy in milk production; a case study from Konya province of Turkey. Energy, 183, 142–148. https://doi.org/10.1016/j.energy.2019.06.133
Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (2022). Transesterification process of biodiesel production from nonedible vegetable oil sources using catalysts from waste sources. In A Thermo-Economic Approach to Energy From Waste (pp. 171–193). Elsevier. https://doi.org/10.1016/B978-0-12-824357-2.00002-4
Rezeka, S. F., El-Maghalany, W. M., & Abdelhalim, A. M. (2017). Influence of Pinch Point Temperature on the Performance of Integrated Solar Combined Cycle. 6(06), 269–272. www.ijert.org
Rogério, S., Magalhaes, D. S., Patrick, Y., Das, C., Diniz, O., & Santana, A. De. (2023). Energy Optimization Study In an Ethanol Production Unit Using Pinch Technology. Journal of Electrical Electronics Engineering, 2(2), 187–195. https://doi.org/10.33140/jeee.02.02.12
Rogoff, M. J. (2014). Recycling Economics. Solid Waste Recycling and Processing, 157–179. https://doi.org/10.1016/b978-1-4557-3192-3.00007-5
Shao, Y., Yuan, Y., Xi, Y., Zhao, T., & Ai, N. (2023). Effects of Homogenization on Organoleptic Quality and Stability of Pasteurized Milk Samples. Agriculture (Switzerland), 13(1). https://doi.org/10.3390/agriculture13010205
Suksangpanomrung, P., Ritthiruangdej, P., Hiriotappa, A., & Therdthai, N. (2024). Rapid, non-destructive prediction of coconut composition for sustainable UHT milk production via near-infrared spectroscopy. Journal of Food Composition and Analysis, 128(January), 106009. https://doi.org/10.1016/j.jfca.2024.106009
Sun, Y., Wang, R., Li, Q., & Ma, Y. (2023). Influence of storage time on protein composition and simulated digestion of UHT milk and centrifugation presterilized UHT milk in vitro. Journal of Dairy Science, 106(5), 3109–3122. https://doi.org/10.3168/jds.2022-22602
Tan, R. R., & Foo, D. C. Y. (2017). Carbon Emissions Pinch Analysis for Sustainable Energy Planning. In Encyclopedia of Sustainable Technologies (Vol. 4). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10148-4
Tina, M., & Chiruvella, S. (2023). A Comparative Study of Consumption of Animal Milk and Plant Based Milk among Young Adults. International Journal For Multidisciplinary Research, 5(4). https://doi.org/10.36948/ijfmr.2023.v05i04.4318
Tomasula, P. M., Yee, W. C. F., McAloon, A. J., Nutter, D. W., & Bonnaillie, L. M. (2013). Computer simulation of energy use, greenhouse gas emissions, and process economics of the fluid milk process. Journal of Dairy Science, 96(5), 3350–3368. https://doi.org/10.3168/jds.2012-6215
Trojan, M., & Granda, M. (2018). Modeling of the boiler economizer. MATEC Web of Conferences, 240, 1–7. https://doi.org/10.1051/matecconf/201824005034
Walden, J. V. M., Wellig, B., & Stathopoulos, P. (2023). Heat pump integration in non-continuous industrial processes by Dynamic Pinch Analysis Targeting. Applied Energy, 352(August), 121933. https://doi.org/10.1016/j.apenergy.2023.121933
Yushkova, E., & Lebedev, V. (2023). The use of pinch analysis technology to assess the energy efficiency of oil refining technologies. International Journal of Exergy, 40(1), 108–127. https://doi.org/10.1504/IJEX.2023.10053575
Zhu, Z., Zhang, Z., Chen, Y., & Wu, J. (2016). Parameter optimization of dual-pressure vaporization Kalina cycle with second evaporator parallel to economizer. Energy, 112, 420–429. https://doi.org/10.1016/j.energy.2016.06.108
DOI: https://doi.org/10.24167/jfcn.v2i1.14321
DOI (PDF): https://doi.org/10.24167/jfcn.v2i1.14321.g3333
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Journal of Food, Culinary, and Nutrition
Online ISSN : 3063-4121 JFCN Stats






