Pinch Analysis of Heat Exchanger Networks in A Simulated Milk Pasteurization Plant

Gelbert Jethro Sanyoto, Novita Ika Putri

Abstract


The dairy industry depends on milk pasteurization to achieve both product safety and nutritional value  through  its  controlled  heat  treatment  process.  However,  due  to  substantial  energy  usage, finding new methods which will boost operational efficiency is required. The research investigates the  Heat  Exchanger  Network  (HEN)  of  a  conventional  milk  pasteurization  facility  through  pinch analysis to minimize energy usage and production expenses. A High Temperature Short-Time (HTST) pasteurization system was simulated in SuperPro Designer v9.0 using data obtained from an existing plant with a capacity of 4,500 kg per hour. The hot and cold stream interactions were then analyzed using HINT v2.2 to find the pinch points and help redesign the heat recovery system. The analysis resulted  in  two  enhanced  HEN  configurations  which  became  Alternative  A  and  B.  The  analysis showed  Alternative  B  provided  the  optimal  solution  between  heat  recovery  and  cooling  demand requirements  which  would  result  in  $2,200  annual  utility  cost  savings.  The  $427,000  capital requirement  may  extend  the  payback  period  but its  success  depends  on  particular  factors  which include  local  energy  expenses  and  operational  efficiency.  The  research  demonstrates  that  pinch analysis provides essential value for  dairy processing operations because it helps improve energy efficiency and enables better sustainable decision-making.

Keywords


Milk pasteurization plant; Pinch analysis; Heat exchanger network; Process simulation

Full Text:

PDF

References


Alhanif, M., Sanyoto, G. J., & Widayat, W. (2020). Process Integration of Sulfuric Acid Plant Based on Contact Process. Frontiers in Heat and Mass Transfer, 15. https://doi.org/10.5098/HMT.15.17

Ayou, D. S., & Coronas, A. (2024). Comparative analysis of solar-powered heat pump systems for decarbonization of process heating and cooling applications: Case of milk pasteurization. Thermal Science and Engineering Progress, 53(January), 102774. https://doi.org/10.1016/j.tsep.2024.102774

Ayou, D. S., Hargiyanto, R., & Coronas, A. (2022). Ammonia-based compression heat pumps for simultaneous heating and cooling applications in milk pasteurization processes: Performance evaluation. Applied Thermal Engineering, 217(June), 119168. https://doi.org/10.1016/j.applthermaleng.2022.119168

Bakar, S. H. A., Hamid, M. K. A., Alwi, S. R. W., & Manan, Z. A. (2017). Sensitivity analysis of industrial heat exchanger network design. Chemical Engineering Transactions, 56, 1489–1494. https://doi.org/10.3303/CET1756249

Bousbia, A., Gueroui, Y., Boudalia, S., Benada, M., & Chemmam, M. (2021). Effect of High Temperature, Short Time (HTST) Pasteurization on Milk Quality Intended for Consumption. Asian Journal of Dairy and Food Research, 40(2), 147–151. https://doi.org/10.18805/ajdfr.DR-210

BPOM. (2023). Pedoman Penetapan Kategori Pangan 01.0 Produk-Produk Susu dan Analognya. In Book. Badan Pengawas Obat dan Makanan Republik Indonesia.

Harwood, W. S., Carter, B. G., Cadwallader, D. C., & Drake, M. A. (2020). The role of heat treatment in light oxidation of fluid milk. Journal of Dairy Science, 103(12), 11244–11256. https://doi.org/10.3168/jds.2020-18933

Hummel, D., Atamer, Z., Butz, L., & Hinrichs, J. (2024). Reproducing high mechanical load during industrial processing of UHT milk: Effect on frothing capacity. Journal of Dairy Science, 107(12), 10452–10461. https://doi.org/10.3168/jds.2024-25291

Indumathy, M., Sobana, S., Panda, B., & Panda, R. C. (2022). Modelling and control of plate heat exchanger with continuous high-temperature short time milk pasteurization process – A review. Chemical Engineering Journal Advances, 11(February), 100305. https://doi.org/10.1016/j.ceja.2022.100305

Kazantzi, V., Kazi, M. K., Eljack, F., El-Halwagi, M. M., & Kazantzis, N. (2019). A pinch analysis approach to environmental risk management in industrial solvent selection. Clean Technologies and Environmental Policy, 21(2), 351–366. https://doi.org/10.1007/s10098-018-1640-1

Kumar, T. R., Beiron, J., Marthala, V. R. R., Pettersson, L., Harvey, S., & Thunman, H. (2024). Combining exergy-pinch and techno-economic analyses for identifying feasible decarbonization opportunities in carbon-intensive process industry: Case study of a propylene production technology. In Preparation, 100853. https://doi.org/10.1016/j.ecmx.2024.100853

Lee, A. P., Barbano, D. M., & Drake, M. A. (2016). Short communication: The effect of raw milk cooling on sensory perception and shelf life of high-temperature, short-time (HTST)–pasteurized skim milk. Journal of Dairy Science, 99(12), 9659–9667. https://doi.org/10.3168/jds.2016-11771

Lee, J. H., Kim, Y. S., Jo, J. H., Cho, H., & Cho, Y. H. (2018). Development of economizer control method with variable mixed air temperature. Energies, 11(9). https://doi.org/10.3390/en11092445

Lim, S. Y., Benner, L. C., & Clark, S. (2019). Neither thermosonication nor cold sonication is better than pasteurization for milk shelf life. Journal of Dairy Science, 102(5), 3965–3977. https://doi.org/10.3168/jds.2018-15347

Liu, G., Carøe, C., Qin, Z., Munk, D. M. E., Crafack, M., Petersen, M. A., & Ahrné, L. (2020). Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. Lwt, 127(April), 109370. https://doi.org/10.1016/j.lwt.2020.109370

Łšmieja, M., Bogdański, P., & Czerwiński, K. (2018). Modelling of pasteurization process line in dairy industry in context of process control. AIP Conference Proceedings, 2029(July 2019). https://doi.org/10.1063/1.5066536

Mahar, A., Shaikh, M. S., & Bhatti, I. (2019). Performance analysis of plate type heat exchanger for milk pasteurization. AIP Conference Proceedings, 2119(July). https://doi.org/10.1063/1.5115370

Mailaram, S., Narisetty, V., Maity, S. K., Gadkari, S., Thakur, V. K., Russell, S., & Kumar, V. (2023). Lactic acid and biomethane production from bread waste: a techno-economic and profitability analysis using pinch technology. Sustainable Energy and Fuels, 7(13), 3034–3046. https://doi.org/10.1039/d3se00119a

Mandalagiri, L., Irawan, A., & Yani, S. (2021). Operability and Flexibility of Pinch Applications on Heat Exchanger Network in Chemical Industry – A Review. Journal of Chemical Process Engineering, 6(1), 36–47. https://doi.org/10.33536/jcpe.v6i1.897

Mohammad Rozali, N. E., Wan Alwi, S. R., Manan, Z. A., & Klemeš, J. J. (2016). Sensitivity analysis of hybrid power systems using Power Pinch Analysis considering Feed-in Tariff. Energy, 116, 1260–1268. https://doi.org/10.1016/j.energy.2016.08.063

Nadtochii, L., Orazov, A., Muradova, M., Bozymov, K., Japarova, A., & Baranenko, D. (2018). Comparison of the energy efficiency of production of camel’s and cow’s milk resources. Energy Procedia, 147, 510–517. https://doi.org/10.1016/j.egypro.2018.07.064

OECD. (2024). OECD-FAO Agricultural Outlook 2024-2033. In OECD-FAO Agricultural Outlook 2024-2033. https://doi.org/10.4060/cd0991en

Oğuz, C., & Yener, A. (2019). The use of energy in milk production; a case study from Konya province of Turkey. Energy, 183, 142–148. https://doi.org/10.1016/j.energy.2019.06.133

Ramanathan, A., Begum, K. M. M. S., Pereira, A. O., & Cohen, C. (2022). Transesterification process of biodiesel production from nonedible vegetable oil sources using catalysts from waste sources. In A Thermo-Economic Approach to Energy From Waste (pp. 171–193). Elsevier. https://doi.org/10.1016/B978-0-12-824357-2.00002-4

Rezeka, S. F., El-Maghalany, W. M., & Abdelhalim, A. M. (2017). Influence of Pinch Point Temperature on the Performance of Integrated Solar Combined Cycle. 6(06), 269–272. www.ijert.org

Rogério, S., Magalhaes, D. S., Patrick, Y., Das, C., Diniz, O., & Santana, A. De. (2023). Energy Optimization Study In an Ethanol Production Unit Using Pinch Technology. Journal of Electrical Electronics Engineering, 2(2), 187–195. https://doi.org/10.33140/jeee.02.02.12

Rogoff, M. J. (2014). Recycling Economics. Solid Waste Recycling and Processing, 157–179. https://doi.org/10.1016/b978-1-4557-3192-3.00007-5

Shao, Y., Yuan, Y., Xi, Y., Zhao, T., & Ai, N. (2023). Effects of Homogenization on Organoleptic Quality and Stability of Pasteurized Milk Samples. Agriculture (Switzerland), 13(1). https://doi.org/10.3390/agriculture13010205

Suksangpanomrung, P., Ritthiruangdej, P., Hiriotappa, A., & Therdthai, N. (2024). Rapid, non-destructive prediction of coconut composition for sustainable UHT milk production via near-infrared spectroscopy. Journal of Food Composition and Analysis, 128(January), 106009. https://doi.org/10.1016/j.jfca.2024.106009

Sun, Y., Wang, R., Li, Q., & Ma, Y. (2023). Influence of storage time on protein composition and simulated digestion of UHT milk and centrifugation presterilized UHT milk in vitro. Journal of Dairy Science, 106(5), 3109–3122. https://doi.org/10.3168/jds.2022-22602

Tan, R. R., & Foo, D. C. Y. (2017). Carbon Emissions Pinch Analysis for Sustainable Energy Planning. In Encyclopedia of Sustainable Technologies (Vol. 4). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10148-4

Tina, M., & Chiruvella, S. (2023). A Comparative Study of Consumption of Animal Milk and Plant Based Milk among Young Adults. International Journal For Multidisciplinary Research, 5(4). https://doi.org/10.36948/ijfmr.2023.v05i04.4318

Tomasula, P. M., Yee, W. C. F., McAloon, A. J., Nutter, D. W., & Bonnaillie, L. M. (2013). Computer simulation of energy use, greenhouse gas emissions, and process economics of the fluid milk process. Journal of Dairy Science, 96(5), 3350–3368. https://doi.org/10.3168/jds.2012-6215

Trojan, M., & Granda, M. (2018). Modeling of the boiler economizer. MATEC Web of Conferences, 240, 1–7. https://doi.org/10.1051/matecconf/201824005034

Walden, J. V. M., Wellig, B., & Stathopoulos, P. (2023). Heat pump integration in non-continuous industrial processes by Dynamic Pinch Analysis Targeting. Applied Energy, 352(August), 121933. https://doi.org/10.1016/j.apenergy.2023.121933

Yushkova, E., & Lebedev, V. (2023). The use of pinch analysis technology to assess the energy efficiency of oil refining technologies. International Journal of Exergy, 40(1), 108–127. https://doi.org/10.1504/IJEX.2023.10053575

Zhu, Z., Zhang, Z., Chen, Y., & Wu, J. (2016). Parameter optimization of dual-pressure vaporization Kalina cycle with second evaporator parallel to economizer. Energy, 112, 420–429. https://doi.org/10.1016/j.energy.2016.06.108




DOI: https://doi.org/10.24167/jfcn.v2i1.14321

DOI (PDF): https://doi.org/10.24167/jfcn.v2i1.14321.g3333

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Journal of Food, Culinary, and Nutrition



Online ISSN : 3063-4121 JFCN Stats