Scholarship Eligibility Decision Support Using Naive Bayes Case Study : Sandjojo Foundation Scholarship

Tan, Yohanes Christianto Aryo Wicaksono, YB Dwi Setianto

Abstract


Until now there are no basic rules to determine the candidates that worthy to receive Sandjojo Foundation scholarship at Soegijapranata Catholic University. Therefore, the scholarship’s recipients are not well-targeted.This project can help to solve problems by using Naive Bayes algorithm as a media for decision makers with criteria such as based on GPA of the students’ registran, total parents’ income, and must be an active student in organization. By using the registrant’s previous data, Naive Bayes algorithm can study the data for each criteria that are inputted to determine whether the applicant is eligble or not to receive the scholarship from Sandjojo Foundation. This project made using web base application and has been tested four (4) times with various kinds of test data and training data, with the accuracy results are around 50% until 65% and the time is lower than three (3) seconds.


Keywords


naive bayes; scholarship; decission support system

References


A. Jananto, “Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa,” Dinamik, vol. 18, no. 1, Art. no. 1, 2013, Accessed: May 15, 2021. [Online]. Available: https://www.unisbank.ac.id/ojs/index.php/fti1/article/view/1669

D. Dahri, F. Agus, and D. M. Khairina, “Metode Naive Bayes Untuk Penentuan Penerima Beasiswa Bidikmisi Universitas Mulawarman,” Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 11, no. 2, Art. no. 2, Sep. 2016, doi: 10.30872/jim.v11i2.211.

E. Manalu, F. A. Sianturi, and M. R. Manalu, “Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan dan Jumlah Pemesanan pada Cv. Papadan Mama Pastries,” J.Mantik Penusa, Mantik Penusa, vol. 1, no. 2, Art. no. 2, Dec. 2017, Accessed: May 15, 2021. [Online]. Available: http://e-jurnal.pelitanusantara.ac.id/index.php/mantik/article/view/257

Y. V. Via, B. Nugroho, and A. Syafrizal, “SISTEM PENDUKUNG KEPUTUSAN KLASIFIKASI TINGKAT KEGANASAN KANKER PAYUDARA DENGAN METODE NAÏVE BAYES CLASSIFIER,” SCAN - Jurnal Teknologi Informasi dan Komunikasi, vol. 10, no. 2, Art. no. 2, Jan. 2015, doi: 10.33005/scan.v10i2.609.

H. Wasiati and D. Wijayanti, “Sistem Pendukung Keputusan Penentuan Kelayakan Calon Tenaga Kerja Indonesia Menggunakan Metode Naive Bayes (Studi Kasus: Di P.T. Karyatama Mitra Sejati Yogyakarta),” IJNS - Indonesian Journal on Networking and Security, vol. 3, no. 2, Art. no. 2, Jan. 2014, doi: 10.1123/ijns.v3i2.154.

T. Jatmikanto and M. A. I. Pakereng, “Implementasi Algoritma Naïve Bayes dalam Proses Analisis Efisiensi Jasa Servis Bengkel Daihatsu Cabang Salatiga,” p. 1.

M. Furqan, S. H. Wibowo, S. Kom, M. Kom, and D. Abdullah, “SISTEM PERSEDIAAN OBAT PADA PUSKESMAS MENGGUNAKAN METODE NAÏVE BAYES (STUDI KASUS PUSKESMAS TALANG TINGGI SELUMA),” JURNAL TEKNIK INFORMATIKA UNIVERSITAS MUHAMADIYAH BENGKULU, p. 10, 2016.

M. P. Putri and F. Y. A. Irsyadi, “SISTEM PREDIKSI KESIAPAN SISWA SMP DALAM MENGHADAPI UJIAN NASIONAL MENGGUNAKAN METODE NAÏVE BAYES,” e- Jurnal Mitra Pendidikan, vol. 2, no. 5, Art. no. 5, May 2018.

“Beasiswa Sandjojo – Informasi Beasiswa.” https://www.unika.ac.id/infobeasiswa/category/info-beasiswa/beasiswa-sandjojo/ (accessed May 15, 2021).

C. Bishop, Pattern Recognition and Machine Learning. New York: Springer-Verlag, 2006. Accessed: May 15, 2021. [Online]. Available: https://www.springer.com/gp/book/9780387310732




DOI: https://doi.org/10.24167/proxies.v3i1.3626

Copyright (c) 2021 Proxies : Jurnal Informatika



View My Stats