Comorbidity Based Death Risk Prediction in COVID-19 Patients Using Support Vector Machine (SVM)
Abstract
The covid19 pandemic has hit almost all countries. Covid-19 is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which results in many deaths, especially for patients who have comorbidities. By using the machine learning SVM method, predict of the classification between comorbid and death.. The comorbid taken were pneumonia, diabetes, COPD, asthma, insomnia, hypertension, cardiovascular, chronic renal, obesity, and USM. This paper also added with smokers in the feature. The data were taken from Kaggle which is data from the Mexican government from 2020-2021. The SVM method uses a linear kernel and radial basis function to get the F1 value to know which these have the results better. This paper also compares the results of F1 values using other methods such as KNN, Logistic regression, Xboost, decision tree, Random Forest and Multilayer Perceptron and the last, to know the importance feature or which comorbid has the highest death rate using SVM. The Result is SVM uses linear and rbf gets almost the same F1 value. It also same with other methods and the pneumonia has the highest death rate.
Keywords
Full Text:
PDFReferences
Our World in Data [ cited 5 December 2022]. Available in https://ourworldindata.org/grapher/daily-covid-cases-deaths-7-day-ra
Haq AD, Nugraha AP, Anggy F, Damayanti F, Wibisana IKGA, Widhiani NPV, et al. “ Faktor-Faktor Terkait Tingkat Keparahan Infeksi Coronavirus Disease 2019 (COVID-19): Sebuah Kajian Literatur”. Jurnal Ilmiah Mahasiswa Kedokteran Indonesia. 2021;9(1).
Kementiran Kesehatan Republik Indoensia. Simposium PAPDI. “Kesiapan Kemenkes Dalam Menghadapi Outbreak Novel Coronavirus” (2019-ncov). 2020; https://www.papdi.or.id/pdfs/817/dr Siti Nadia - Kemenkes RI.pd.
Sanyaolu A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, et al. “Comorbidity and its impact on patients with COVID-19”. Sn Comprehensive Clinical Medicine.2020;2: 1-8.
Aqmaria NW, Risanti ED, Mahmudah INN, Jatmiko SW. “Obesitas Sebagai Faktor Resiko Keparahan Pada COVID-19”. The 13th University Research Colloqium 2021.
Kemenkes. (2021). Situasi Terkini Perkembangan Novel Coronavirus (covid-19).
Ferdowsy, F., Rahi, K. S. A., Jabiullah, M. I.,Habib, M. T. (2021). “A machine learning approach for obesity risk prediction.” Current Research in Behavioral Sciences 2 https://doi.org/10.1016/j.crbeha.2021.100053.
Ramya, A., & Rohini, K. (2021). “Comparative evaluation of machine learning classifiers with Obesity dataset”. Proceedings - 2021 International Conference on Computing Sciences, ICCS 2021,38–41. https://doi.org/10.1109/ICCS54944.2021.00016
Lian, Z., Li, Y., Wang, W., Ding, W., Niu, Z., Yang, X.,; Wu, C. (2021). “The Prediction Model of Risk Factors for COVID-19 Developing into Severe Illness Based on 1046 Patients with COVID-19”. Emergency Medicine International, 2021, 1–11. https://doi.org/10.1155/2021/7711056.
Odeh, M. M., al Qaissieh, R., Tarifi, A. A., Kilani, M. M., Tadros, R. E., al khashman, A. I., & Alzoubi, K. H. (2021). “A prediction model of risk factors for complications among SARS-CoV2 positive patients: Cases from Jordan”. Journal of Infection and Public Health, 14(6), 689–695. https://doi.org/10.1016/j.jiph.2021.02.010.
Cao, G., Li, P., Chen, Y., Fang, K., Chen, B., Wang, S., Feng, X., Wang, Z., Xiong, M., Zheng, R., Guo, M.,; Sun, Q. (2020). “A Risk Prediction Model for Evaluating the Disease Progression of COVID-19 Pneumonia”. Frontiers in Medicine, 7. https://doi.org/10.3389/fmed.2020.556886
Alizadehsani, R., Alizadeh Sani, Z., Behjati, M., Roshanzamir, Z., Hussain, S., Abedini, N., Hasanzadeh, F., Khosravi, A., Shoeibi, A., Roshanzamir, M., Moradnejad, P., Nahavandi, S., Khozeimeh, F., Zare, A., Panahiazar, M., Acharya, U. R., & Islam, S. M. S. (2021). “Risk factors prediction, clinical outcomes, and mortality in COVID-19 patients”. Journal of Medical Virology,93(4),2307–2320. https://doi.org/10.1002/jmv.26699
Meister, T., Pisarev, H., Kolde, R., Kalda, R., Suija, K., Milani, L., Karo-Astover, L., Piirsoo, M., & Uuskula, A. (2022). “Clinical characteristics and risk factors for COVID-19 infection and disease severity: A nationwide observational study in Estonia.” PLoS ONE, 17(6 June). https://doi.org/10.1371/journal.pone.0270192
Willette, A. A., Willette, S. A., Wang, Q., Pappas, C., Klinedinst, B. S., Le, S., Larsen, B., Pollpeter, A., Li, T., Mochel, J. P., Allenspach, K., Brenner, N., & Waterboer, T. (2022). “Using machine learning to predict COVID-19 infection and severity risk among 4510 aged adults: a UK Biobank cohort study”. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-07307-z
Gusev, E., Sarapultsev, A., Solomatina, L., & Chereshnev, V. (2022). “Sars‐Cov‐2‐Specific Immune Response and the Pathogenesis of COVID‐19”. In International Journal of Molecular Sciences (Vol. 23, Issue 3). MDPI. https://doi.org/10.3390/ijms23031716
Andrade, E. C. de, Pinheiro, P. R., Barros, A. L. B. de P., Nunes, L. C., Pinheiro, L. I. C. C., Pinheiro, P. G. C. D., & Holanda Filho, R. (2022). Towards Machine Learning Algorithms in Predicting the Clinical Evolution of Patients Diagnosed with COVID-19. Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12188939
DOI: https://doi.org/10.24167/sisforma.v11i2.13159
Refbacks
- There are currently no refbacks.
SISFORMA: Journal of Information Systems | p-ISSN: 2355-8253 | e-ISSN: 2442-7888 | View My Stats
This work is licensed under a Creative Commons Attribution 4.0 International License.