Sentiment Analysis of Urban Opinions on COVID-19 Handling in Brunei Darussalam Using Lexicon Weighting and Machine Learning Algorithms
Abstract
Keywords
Full Text:
PDFReferences
F. Landi et al., "Post-COVID-19 global health strategies: the need for an interdisciplinary approach," Aging Clin. Exp. Res., vol. 32,
no. 8, pp. 1613–1620, 2020, doi: 10.1007/s40520-020-01616-x.
B. Liu, "Social Network Analysis," in Web data mining: Exploring hyperlinks, contents, and usage data, vol. 1, Heidelberg: Springer,
, pp. 269–309. doi: 10.1007/978-3-642-19460-3.
D. Sharma, M. Sabharwal, V. Goyal, and M. Vij, "Sentiment analysis techniques for social media data: a review," in First
international conference on sustainable technologies for computational intelligence, 2020, pp. 75–90.
B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi
Covid-19,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021, doi: 10.22146/jnteti.v10i2.1421.
W. Yulita et al., “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes
Classifier,” J. Data Min. dan Sist. Inf., vol. 2, no. 2, pp. 1–9, 2021.
A. Prihatini, "Semantic network of the word association in the field of law," Litera, vol. 18, no. 3, pp. 430–446, 2019.
A. L. Fairuz, R. D. Ramadhani, and N. A. F. Tanjung, “Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter,”
J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 1, pp. 42–51, 2021, doi: 10.20895/dinda.v1i1.180.
V. Chitraa and D. A. S. Davamani, "A Survey on Preprocessing Methods for Web Usage Data," Int. J. Comput. Sci. Inf. Secur., vol. 7,
no. 3, pp. 78–83, 2010, doi: 10.48550/arXiv.1004.1257.
S.-U. Hassan et al., "Predicting literature's early impact with sentiment analysis in Twitter," Knowledge-Based Syst., vol. 192, p.
, 2020, doi: https://doi.org/10.1016/j.knosys.2019.105383.
I. El Naqa and M. J. Murphy, "What Is Machine Learning?," in Machine Learning in Radiation Oncology, Cham: Springer
International Publishing, 2015, pp. 3–11. doi: 10.1007/978-3-319-18305-3_1.
P. R. Togatorop, M. Sianturi, D. Simamora, and D. Silaen, “Optimizing Random Forest using Genetic Algorithm for Heart Disease
Classification,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 13, no. 1, p. 60, 2022, doi: 10.24843/lkjiti.2022.v13.i01.p06.
I. W. A. S. Darma, “Implementation of Zoning and K-Nearest Neighbor in Character Recognition of Wrésastra Script,” Lontar
Komput. J. Ilm. Teknol. Inf., vol. 10, no. 1, p. 9, 2019, doi: 10.24843/lkjiti.2019.v10.i01.p02.
A. Saleh and F. Nasari, “Implementation Equal-Width Interval Discretization in Naive Bayes Method for Increasing Accuracy of
Students’ Majors Prediction,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 9, no. 2, p. 104, 2018, doi: 10.24843/lkjiti.2018.v09.i02.p05.
V. A. Fitri, R. Andreswari, and M. A. Hasibuan, "Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in
Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm," Procedia Comput. Sci., vol. 161, pp. 765–772, 2019, doi:
https://doi.org/10.1016/j.procs.2019.11.181.
P. R. Togatorop and A. Fauzi, “Klasifikasi Penggunaan Masker Wajah Menggunakan Squeezenet,” JATISI (Jurnal Tek. Inform. dan
Sist. Informasi), vol. 9, no. 1, pp. 397–406, 2022, doi: 10.35957/jatisi.v9i1.642.
S. Devella, Y. Yohannes, and F. N. Rahmawati, “Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang
Berdasarkan SIFT,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 310–320, 2020, doi: 10.35957/jatisi.v7i2.289.
DOI: https://doi.org/10.24167/sisforma.v11i1.11957
Refbacks
- There are currently no refbacks.
SISFORMA: Journal of Information Systems | p-ISSN: 2355-8253 | e-ISSN: 2442-7888 | View My Stats
This work is licensed under a Creative Commons Attribution 4.0 International License.