Sentiment Analysis of Urban Opinions on COVID-19 Handling in Brunei Darussalam Using Lexicon Weighting and Machine Learning Algorithms

Usman Ependi, Wahyu Caesarendra

Abstract


Crisis management of Covid-19 is closely related to how government provides policy measures and monitors the health conditions of residents and others. Residents will provide feedback (opinions) for any services provided by the government. The main issue in this area is understanding residents' opinions to become a source of information for sentiment in public policy. This study aims to analyze sentiment on crisis management of covid-19 in Brunei Darussalam. Lexicon weight and machine learning classifiers (random forest, k-nearest neighbors, naive Bayes, and decision trees) are used for handling this issue. The data used in this study comes from resident opinions on the BruHealth application, which is part of Brunei Darussalam Government Services. Based on the experimental results, the sentiment of crisis management of Covid-19 is positive. Lexicon weight is used as a basis for data labelling in machine learning classification. Classification results using random forest, k-nearest neighbors, naive Bayes, and decision trees get a significant accuracy of 83,8%, 73,7%, 55%, and 84,2%, respectively.

Keywords


sentiment analysis; covid-19; lexicon; machine learning

Full Text:

PDF

References


F. Landi et al., "Post-COVID-19 global health strategies: the need for an interdisciplinary approach," Aging Clin. Exp. Res., vol. 32,

no. 8, pp. 1613–1620, 2020, doi: 10.1007/s40520-020-01616-x.

B. Liu, "Social Network Analysis," in Web data mining: Exploring hyperlinks, contents, and usage data, vol. 1, Heidelberg: Springer,

, pp. 269–309. doi: 10.1007/978-3-642-19460-3.

D. Sharma, M. Sabharwal, V. Goyal, and M. Vij, "Sentiment analysis techniques for social media data: a review," in First

international conference on sustainable technologies for computational intelligence, 2020, pp. 75–90.

B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi

Covid-19,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021, doi: 10.22146/jnteti.v10i2.1421.

W. Yulita et al., “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid-19 Menggunakan Algoritma Naïve Bayes

Classifier,” J. Data Min. dan Sist. Inf., vol. 2, no. 2, pp. 1–9, 2021.

A. Prihatini, "Semantic network of the word association in the field of law," Litera, vol. 18, no. 3, pp. 430–446, 2019.

A. L. Fairuz, R. D. Ramadhani, and N. A. F. Tanjung, “Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter,”

J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 1, pp. 42–51, 2021, doi: 10.20895/dinda.v1i1.180.

V. Chitraa and D. A. S. Davamani, "A Survey on Preprocessing Methods for Web Usage Data," Int. J. Comput. Sci. Inf. Secur., vol. 7,

no. 3, pp. 78–83, 2010, doi: 10.48550/arXiv.1004.1257.

S.-U. Hassan et al., "Predicting literature's early impact with sentiment analysis in Twitter," Knowledge-Based Syst., vol. 192, p.

, 2020, doi: https://doi.org/10.1016/j.knosys.2019.105383.

I. El Naqa and M. J. Murphy, "What Is Machine Learning?," in Machine Learning in Radiation Oncology, Cham: Springer

International Publishing, 2015, pp. 3–11. doi: 10.1007/978-3-319-18305-3_1.

P. R. Togatorop, M. Sianturi, D. Simamora, and D. Silaen, “Optimizing Random Forest using Genetic Algorithm for Heart Disease

Classification,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 13, no. 1, p. 60, 2022, doi: 10.24843/lkjiti.2022.v13.i01.p06.

I. W. A. S. Darma, “Implementation of Zoning and K-Nearest Neighbor in Character Recognition of Wrésastra Script,” Lontar

Komput. J. Ilm. Teknol. Inf., vol. 10, no. 1, p. 9, 2019, doi: 10.24843/lkjiti.2019.v10.i01.p02.

A. Saleh and F. Nasari, “Implementation Equal-Width Interval Discretization in Naive Bayes Method for Increasing Accuracy of

Students’ Majors Prediction,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 9, no. 2, p. 104, 2018, doi: 10.24843/lkjiti.2018.v09.i02.p05.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, "Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in

Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm," Procedia Comput. Sci., vol. 161, pp. 765–772, 2019, doi:

https://doi.org/10.1016/j.procs.2019.11.181.

P. R. Togatorop and A. Fauzi, “Klasifikasi Penggunaan Masker Wajah Menggunakan Squeezenet,” JATISI (Jurnal Tek. Inform. dan

Sist. Informasi), vol. 9, no. 1, pp. 397–406, 2022, doi: 10.35957/jatisi.v9i1.642.

S. Devella, Y. Yohannes, and F. N. Rahmawati, “Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang

Berdasarkan SIFT,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 310–320, 2020, doi: 10.35957/jatisi.v7i2.289.




DOI: https://doi.org/10.24167/sisforma.v11i1.11957

Refbacks

  • There are currently no refbacks.




SISFORMA: Journal of Information Systems | p-ISSN: 2355-8253 | e-ISSN: 2442-7888 | View My Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.