CLASSIFICATION OF MATERNAL HEALTH RISKS USING BOOSTING TECHNIQUE

Caleb Adithia Kurniawan, Rosita Herawati

Abstract


Maternal health is an important concern as it directly impacts the ongoing survival and well-being of future generations. In many developing nations, maternal mortality has become a serious problem despite the advances in medical science. Recognizing potential risks in pregnancies is essential for the well-being of the mother and the newborn. In various clinical applications, including disease diagnosis, treatment planning, and patient monitoring, AI models are capable of showing promising results. Depending on the chance of complications during pregnancy, it can be categorized into three risk levels: low, and moderate. The risk is classified based on age, systolic and diastolic blood pressure, blood sugar, body temperature, and heart rate. This paper aims to apply several boosting techniques: Boosted Random Forest, XGboost, and Catboost to classify the maternal health risk. By classifying the maternal risk, it should help minimize the occurrence of maternal death which will lead to the continuation of humanity.


Keywords


classification;boosting;machine learning

Full Text:

PDF

References


R. Musarandega, M. Nyakura, R. Machekano, R. Pattinson, and S. P. Munjanja, “Causes of maternal mortality in Sub-Saharan Africa: A systematic review of studies published from 2015 to 2020,” J Glob Health, vol. 11, p. 04048, 2021, doi: 10.7189/jogh.11.04048

O. Olonade, T. I. Olawande, O. J. Alabi, and D. Imhonopi, “Maternal Mortality and Maternal Health Care in Nigeria: Implications for Socio-Economic Development,” Open Access Maced J Med Sci, vol. 7, no. 5, pp. 849–855, Mar. 2019, doi: 10.3889/oamjms.2019.041

“Maternal mortality,” WHO, Feb. 22, 2023. Available: https://www.who.int/news-room/fact-sheets/detail/maternal-mortality

M. Y. Al-Hindi et al., “Association of Antenatal Risk Score With Maternal and Neonatal Mortality and Morbidity,” Cureus, vol. 12, no. 12, p. e12230, Dec. 2020, doi: 10.7759/cureus.12230

T. O. Togunwa, A. O. Babatunde, and K.-R. Abdullah, “Deep hybrid model for maternal health risk classification in pregnancy: synergy of ANN and random forest,” Front. Artif. Intell., vol. 6, Jul. 2023, doi: 10.3389/frai.2023.1213436. Available: https://www.frontiersin.org/articles/10.3389/frai.2023.1213436. [Accessed: Apr. 02, 2024]

I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects,” IEEE Access, vol. 10, pp. 99129–99149, 2022, doi: 10.1109/ACCESS.2022.3207287

K. Banujan, M. Ifham, and B. T. G. S. Kumara, “Boosting Ensemble Machine Learning Approach for Covid-19 Death Prediction,” vol. 3, no. 1, Art. no. 1, Feb. 2023, doi: 10.4038/sljssh.v3i1.88

C. Iwendi et al., “COVID-19 Patient Health Prediction Using Boosted Random Forest Algorithm,” Front Public Health, vol. 8, p. 357, Jul. 2020, doi: 10.3389/fpubh.2020.00357

Y. Mishina, R. Murata, Y. Yamauchi, T. Yamashita, and H. Fujiyoshi, “Boosted Random Forest,” IEICE Transactions on Information and Systems, vol. E98.D, no. 9, pp. 1630–1636, 2015, doi: 10.1587/transinf.2014OPP0004

J. Sanjaya, E. Renata, V. E. Budiman, F. Anderson, and M. Ayub, “Prediksi Kelalaian Pinjaman Bank Menggunakan Random Forest dan Adaptive Boosting,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 1, Art. no. 1, Apr. 2020, doi: 10.28932/jutisi.v6i1.2313. Available: https://journal.maranatha.edu/index.php/jutisi/article/view/2313. [Accessed: Apr. 04, 2024]

I. Abuelezz et al., “Contribution of Artificial Intelligence in Pregnancy: A Scoping Review,” Stud Health Technol Inform, vol. 289, pp. 333–336, Jan. 2022, doi: 10.3233/SHTI210927

A. Fauzi, E. Utami, and A. D. Hartanto, “Penerapan Random Forest dan Adaboost untuk Klasifikasi Serangan DDoS,” Journal on Education, vol. 5, no. 3, Art. no. 3, Feb. 2023, doi: 10.31004/joe.v5i3.1582

V. Srivardhan, “Adaptive boosting of random forest algorithm for automatic petrophysical interpretation of well logs,” Acta Geod Geophys, vol. 57, no. 3, pp. 495–508, Sep. 2022, doi: 10.1007/s40328-022-00385-5

M. Ahmed, M. A. Kashem, M. Rahman, and S. Khatun, “Review and Analysis of Risk Factor of Maternal Health in Remote Area Using the Internet of Things (IoT),” in InECCE2019, A. N. Kasruddin Nasir, M. A. Ahmad, M. S. Najib, Y. Abdul Wahab, N. A. Othman, N. M. Abd Ghani, A. Irawan, S. Khatun, R. M. T. Raja Ismail, M. M. Saari, M. R. Daud, and A. A. Mohd Faudzi, Eds., Singapore: Springer, 2020, pp. 357–365. doi: 10.1007/978-981-15-2317-5_30




DOI: https://doi.org/10.24167/proxies.v8i2.13003

Copyright (c) 2025 Proxies : Jurnal Informatika



View My Stats