COMPARATIVE PERFORMANCE ANALYSIS OF SUPPORT VECTOR MACHINE AND RANDOM FOREST ON DIABETES PATIENT DATA FROM HOSPITALS IN THE UNITED STATES
Abstract
The era of technological advancement at this time has begun to help a lot in many job sections, especially in the medical section. Especially in the development of Machine Learning which has a significant impact, the model built can help to predict the patient's disease from the symptoms and tests performed. Therefore, high accuracy and a short time are required for the machine-learning model to be built. The author build a model using the Random Forest algorithm and SVM algorithm, then compare these two models. What is compared between these two models is the computation time required by each algorithm and the level of accuracy, precision, recall, and F1-Score with stepwise data usage. The result to be achieved is that one of the algorithms produces stable and maximum results with the existing data. Among the eight experiments, SVM showed better performance in experiments 1, 3, 4, and 6, while random forest showed better performance in experiments 1, 2, 3, 4, and 6. The sixth experiment yielded the highest accuracy on both the minimum and maximum datasets. Here, SVM achieved 99.992 curacy in 142.0238 seconds and Random Forest achieved 99.982 curacy in 8.045849 seconds. Random Forest was 133.977951 seconds faster, but had a slightly lower accuracy of 0.01%.
Keywords
Full Text:
PDFReferences
Sudianto, Wahyuningtias P, Utami HW, et al. COMPARISON OF RANDOM FOREST AND SUPPORT VECTOR MACHINE METHODS ON TWITTER SENTIMENT ANALYSIS (CASE STUDY: INTERNET SELEBGRAM RACHEL VENNYA ESCAPE FROM QUARANTINE). Jurnal Teknik Informatika (Jutif) 2022; 3: 141–145.
Azhari M, Situmorang Z, Rosnelly R. Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA 2021; 5: 640–651.
Saputro ND. Penerapan Algoritma Support Vector Machine untuk Prediksi Harga Emas. Jurnal Informatika Upgris; 1. Epub ahead of print 2015. DOI: 10.26877/jiu.v1i1.
Dwiasnati S, Devianto Y. Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir. Prosiding SISFOTEK 2021; 5: 202–207.
Supriyanto Y, Ilhamsyah M, Enri U. Prediksi Harga Minyak Kelapa Sawit Menggunakan Linear Regression Dan Random Forest. Jurnal Ilmiah Wahana Pendidikan 2022; 8: 178–185.
Fachid S, Triayudi A. Perbandingan Algoritma Regresi Linier dan Regresi Random Forest Dalam Memprediksi Kasus Positif Covid-19. JURNAL MEDIA INFORMATIKA BUDIDARMA 2022; 6: 68–73.
Ismanto E, Novalia M. Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas. TechnoCom 2021; 20: 400–410.
Utomo VG, Wakhidah N, Putri AN. PREDIKSI HARGA SAHAM DENGAN SVM (SUPPORT VECTOR MACHINE) DAN PEMILIHAN FITUR F-SCORE. Jurnal Informatika Upgris; 6. Epub ahead of print 7 July 2020. DOI: 10.26877/jiu.v6i1.5306.
Purnomo TY, Yanto F, Insani F, et al. Penerapan Algoritma Random Forest pada Klasifikasi Daging. Jurnal Intra Tech 2022; 6: 21–34.
Rindiyani R, Primadewi A, Maimunah M, et al. Klasifikasi Penjualan berdasarkan Platform pada UMKM Omah Branded Menggunakan Random Forest. JURIKOM (Jurnal Riset Komputer) 2022; 9: 1520–1529.
Strack B, DeShazo JP, Gennings C, et al. Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records. BioMed Research International 2014; 2014: 1–11.
Lin W-C, Tsai C-F. Missing value imputation: a review and analysis of the literature (2006–2017). Artif Intell Rev 2020; 53: 1487–1509.
Nguyen QH, Ly H-B, Ho LS, et al. Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil. Mathematical Problems in Engineering 2021; 2021: e4832864.
Deepa B, Ramesh K. Epileptic seizure detection using deep learning through min max scaler normalization. ijhs 2022; 10981–10996.
Mahmood MR. Two Feature Selection Methods Comparison Chi-square and Relief-F for Facial Expression Recognition. J Phys: Conf Ser 2021; 1804: 012056.
DOI: https://doi.org/10.24167/proxies.v7i2.12469
Copyright (c) 2024 Proxies : Jurnal Informatika
View My Stats