ANALYSIS OF ONLINE STORE CONSUMER BEHAVIOUR WITH K-MEANS AND AGGLOMERATIVE CLUSTERING ALGORITHMS
Abstract
An online store or e-commerce is a business system that allows buyers and sellers to conduct electronic transactions over the internet. Along with the increasing use of the internet around the world, the e-commerce business is growing rapidly and becoming a very large industry. To find out consumer behaviour, data analysis can be done using clustering algorithms, namely K-Means compared with Agglomerative Clustering and K-Means compared with K-Means++. Through these three algorithms, the data is reduced in dimension by PCA and t-SNE methods. It is then also analysed using the attributes provided by the dataset to further determine its performance measures. The parameters that will be used for clustering are K values 4, 5, and 6 of K-Means algorithm compared to Agglomerative Clustering and the optimal K value of 4 with the initialised centroid center value for K-Means++. Then determining the distance between data using the Euclidean Distance method, while for data grouping using the Average Linkage method in the Agglomerative Clustering algorithm. Through the method, the results are Agglomerative with a K value of 4 and the best t-SNE data type because the K value is good and the data type used is very good so that the results are also good and K-Means++ with an optimal K value of 4 and the best t-SNE data type because the centroid value is well initialised so that this algorithm speeds up the clustering process rather than the usual K-Means which takes longer in the process of clustering online store consumer behaviour data.
Keywords
Full Text:
PDFReferences
S. Qomariyah, “Perbandingan Algoritma FPGrowth, Apriori dan Squeezer pada Analisis Perilaku Konsumen di Minimarket K1mart ITS,” p. 103.
S. G. Setyorini, E. K. Sari, L. R. Elita, and S. A. Putri, “Analisis Keranjang Pasar Menggunakan Algoritma K-Means dan FP-Growth pada PT. Citra Mustika Pandawa: Market Basket Analysis with K-Means and FP-Growth Algorithm as Citra Mustika Pandawa Company,” MALCOM, vol. 1, no. 1, pp. 41–46, Mar. 2021, doi: 10.57152/malcom.v1i1.62.
B. N. Ruchjana, H. Khoirunnisa, I. Irianingsih, and B. Suhandi, “Perbandingan Penerapan Metode Agglomerative dengan Metode K-Means pada Data Curah Hujan di Wilayah Bogor,” Kubik, vol. 5, no. 2, pp. 71–82, Nov. 2020, doi: 10.15575/kubik.v5i2.7581.
I. Musdalifah and A. Jananto, “Analisis Perbandingan Algoritma Apriori Dan FP-Growth Dalam Pembentukan Pola Asosiasi Keranjang Belanja Pelanggan,” Progresif J. Ilmi. Kom, vol. 18, no. 2, p. 175, Jul. 2022, doi: 10.35889/progresif.v18i2.878.
R. Sibarani, “ALGORITHMA K-MEANS CLUSTERING STRATEGI PEMASARAN PENERIMAAN MAHASISSWA BARU UNIVERSITAS SATYA NEGARA INDONDESIA [ALGORITHMA K-MEANS CLUSTERING STRATEGY MARKETING ADMISSION UNIVERSITAS SATYA NEGARA INDONESIA],” 2018.
R. Rachman, “Penentuan Pola Penjualan Media Edukasi dengan Menggunakan Metode Algoritme Apriori dan FP-Growth,” Jurnal Sistem Informasi, Teknik Informatika, Software Engineering, dan Multimedia, vol. 23, no. 1, Mar. 2021, doi: 10.31294/p.v23i1.9884.
S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, “ANALISIS PEMILIHAN CLUSTER OPTIMAL DALAM SEGMENTASI PELANGGAN TOKO RETAIL,” j. pendidik. teknologi. kejuruan., vol. 18, no. 2, p. 152, Sep. 2021, doi: 10.23887/jptk-undiksha.v18i2.37426.
E. P. Priambodo and A. Jananto, “Perbandingan Analisis Cluster Algoritma K-Means Dan AHC Dalam Perencanaan Persediaan Barang Pada Perusahaan Manufaktur,” vol. 18, no. 2.
N. A. Wulandari, H. Pratiwi, and S. S. Handayani, “Perbandingan Metode K-means and Agglomerative Nesting untuk Clustering Data Digital Marketing di Twitter,” vol. 2, 2023.
R. Rachman and N. Hunaifi, “Penerapan Metode Algoritma Apriori dan FP-Tree Pada Penentuan Pola Pembelian Obat,” Jurnal Sistem Informasi, Teknik Informatika, Software Engineering, dan Multimedia, vol. 22, no. 2, pp. 175–182, Sep. 2020, doi: 10.31294/p.v22i2.8258.
J. Wu, Advances in K-means clustering: a data mining thinking. in Springer theses. Heidelberg Berlin: Springer, 2012.
S. Miyamoto, Theory of agglomerative hierarchical clustering. Singapore: Springer, 2022.
DOI: https://doi.org/10.24167/proxies.v7i1.12466
Copyright (c) 2024 Proxies : Jurnal Informatika
View My Stats