Analysis Insurance Costs for Smokers Using Linear Regression
Abstract
This study explores the effect of smoking habits on insurance costs using the linear regression method. Data was collected from various sources that included information on smoking habits and insurance costs. Using RapidMiner, linear regression analysis was conducted to predict the pattern of insurance costs influenced by smoking status. The results show that smokers tend to pay higher insurance premiums than non-smokers, in line with the health risks they carry. This study highlights the importance of including smoking habits in insurance pricing models, which can help insurance companies set more appropriate premiums based on individual risk. Thus, the results of this study not only deepen the understanding of the relationship between smoking and insurance costs, but also provide practical guidance for insurance companies in developing pricing policies that are more responsive to customers' risk profiles.
Keywords
Full Text:
PDFReferences
V. Matejka and J. Angel Huacan Soto Zurich, “A Framework for the Definition and Analysis of Cyber Insurance Requirements,” Univ. Zurich Master Proj., 2021, [Online]. Available: http://www.csg.uzh.ch/
C. M. Kaplan and E. K. Kaplan, “State policies limiting premium surcharges for tobacco and their impact on health insurance enrollment,” Health Serv. Res., vol. 55, no. 6, pp. 983–992, 2020, doi: 10.1111/1475-6773.13577.
V. U. Ekpu and A. K. Brown, “The Economic Impact of Smoking and of Reducing Smoking Prevalence: Review of Evidence,” Tob. Use Insights, vol. 8, p. TUI.S15628, 2015, doi: 10.4137/tui.s15628.
S. Albawi, L. Alshahrani, N. Albawi, R. Alharbi, and A. Alhakamy, “Prediction of healthcare insurance costs,” Comput. Informatics, vol. 3, no. 1, p. 1250124, 2023, [Online]. Available: https://dergipark.org.tr/tr/pub/ci
Md Mohtaseem Billa, “Medical Insurance Price Prediction Using Machine Learning,” J. Electr. Syst., vol. 20, no. 7s, pp. 2270–2279, 2024, doi: 10.52783/jes.3962.
E. D. Madyatmadja, S. I. Jordan, and J. F. Andry, “Big data analysis using rapidminer studio to predict suicide rate in several countries,” ICIC Express Lett. Part B Appl., vol. 12, no. 8, pp. 757–764, 2021, doi: 10.24507/icicelb.12.08.757.
A. Anggreini, D. Rochmah, and R. Wasir, “Adaptasi Sistem Asuransi Kesehatan Terhadap Perubahan Pola Penyakit: Indonesia,” An-Najat, vol. 2, no. 2, 2024, [Online]. Available: https://jurnal.stikes-ibnusina.ac.id/index.php/an-Najat/article/view/1295
L. Regression, Linear Regression.
T. Maulana, R. Astuti, and F. Muhammad Basysyar, “Implementasi Algoritma Regresi Linear Untuk Memprediksi Pendapatan Pt Pln Berdasarkan Penggunaan Per Kelompok Pelanggan,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3196–3202, 2024, doi: 10.36040/jati.v7i6.8083.
Ainurrohma, “Akurasi Algoritma Klasifikasi pada Software Rapidminer dan Weka,” Prism. Pros. Semin. Nas. Mat., vol. 4, pp. 493–499, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
D. Anugrah Pratama, I. Rizal Mutaqin, and K. Rafael Manuela, “Analisis Terjadinya Kanker Paru-Paru Pada Pasien Menggunakan Decision Tree: Penerapan Algoritma C4.5 Dan RapidMiner Untuk Menentukan Risiko Kanker Pada Gejala Pasien,” Jtmei, vol. 2, no. 4, pp. 156–170, 2023, [Online]. Available: https://doi.org/10.55606/jtmei.v2i4.3004
U. Lathifah and R. Danar Dana, “Implementasi Metode Linear Regression Untuk Prediksi Harga Properti Real Estate Menggunakan Rapidminer,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 1129–1137, 2024, doi: 10.36040/jati.v8i1.8919.
A. P. Ayudhitama and Utomo Pujianto, “Analisa 4 Algoritma Dalam Klasifikasi Liver Menggunakan Rapidminer,” J. Inform. Polinema, vol. 6, no. 2, pp. 1–9, 2020, doi: 10.33795/jip.v6i2.274.
R. C. Prihandari, “Data Mining: Konsep Dan Apikasi Menggunakan Rapidminer (Series: Supervised Learning Dan Unsupervised Learning),” p. 8, 2022, [Online]. Available: http://repository.uin-suska.ac.id/63073/1/REGITA CAHYANI PRIHANDARI.pdf
Baiq Nurul Azmi, Arief Hermawan, and Donny Avianto, “Analisis Pengaruh Komposisi Data Training dan Data Testing pada Penggunaan PCA dan Algoritma Decision Tree untuk Klasifikasi Penderita Penyakit Liver,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 4, pp. 281–290, 2023, doi: 10.35746/jtim.v4i4.298.
DOI: https://doi.org/10.24167/sisforma.v11i2.12998
Refbacks
- There are currently no refbacks.
SISFORMA: Journal of Information Systems | p-ISSN: 2355-8253 | e-ISSN: 2442-7888 | View My Stats
This work is licensed under a Creative Commons Attribution 4.0 International License.