Comparison Of Cbow And Skip Gram On Sentiment Analysis Of Bus Agents Reviews Using CNN
Abstract
Keywords
Full Text:
PDFReferences
“Pemerintah Agar Beri Insentif Bagi Pengusaha Transportasi Umum,” Koran Jakarta, 2020. https://koran-jakarta.com/pemerintah-agar-beri-insentif-bagi-pengusaha-transportasi-umum/
B. Liu, Sentiment analysis: Mining opinions, sentiments, and emotions, 2nd ed. New York: Cambridge University Press, 2015. doi: 10.1017/CBO9781139084789.
Y. Li and T. Yang, “Word Embedding for Understanding Natural Language: A Survey,” Stud. Big Data, vol. 26, pp. 83–104, 2018, doi: 10.1007/978-3-319-53817-4_4.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” 1st Int. Conf. Learn. Represent. ICLR 2013 - Work. Track Proc., no. October, 2013.
H. woo An and N. Moon, “Design of recommendation system for tourist spot using sentiment analysis based on CNN-LSTM,” J. Ambient Intell. Humaniz. Comput., 2019, doi: 10.1007/s12652-019-01521-w.
L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 8, no. 4, pp. 1–25, 2018, doi: 10.1002/widm.1253.
V. Oktaviani, B. Warsito, H. Yasin, R. Santoso, and Suparti, “Sentiment analysis of e-commerce application in Traveloka data review on Google Play site using Naïve Bayes classifier and association method,” J. Phys. Conf. Ser., vol. 1943, no. 1, 2021, doi: 10.1088/1742-6596/1943/1/012147.
N. D. Wulandari, M. H. Z. Nuri, and L. Kurniasari, “Customers’ Satisfaction and Preferences Using Sentiment Analysis on Traveloka: The Case of Yogyakarta Special Region Hotels,” Proc. 1st UMGESHIC Int. Semin. Heal. Soc. Sci. Humanit. (UMGESHIC-ISHSSH 2020), vol. 585, pp. 407–416, 2021, doi: 10.2991/assehr.k.211020.058.
F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egypt. Informatics J., vol. 16, no. 3, pp. 261–273, 2015, doi: 10.1016/j.eij.2015.06.005.
J. Shen, Y. Wei, and Y. Yang, “Collaborative filtering recommendation algorithm based on two stages of similarity learning and its optimization,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2013, vol. 13, no. PART 1, pp. 335–340. doi: 10.3182/20130708-3-CN-2036.00068.
L. Jiang, Y. Cheng, L. Yang, J. Li, H. Yan, and X. Wang, “A trust-based collaborative filtering algorithm for E-commerce recommendation system,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 8, pp. 3023–3034, Aug. 2019, doi: 10.1007/s12652-018-0928-7.
DOI: https://doi.org/10.24167/proxies.v9i1.13281
Copyright (c) 2025 Proxies : Jurnal Informatika
View My Stats




