Stock Prices Prediction Using Machine Learning
Abstract
Keywords
Full Text:
PDFReferences
S. Mehtab and J. Sen, “A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models,” IJBFMI, vol. 6, no. 4, p. 272, 2020, doi:
1504/IJBFMI.2020.115691.
B. Pavlyshenko, “Machine-Learning Models for Sales Time Series Forecasting,” Data, vol.
, no. 1, p. 15, Jan. 2019, doi: 10.3390/data4010015.
S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A Comparison of ARIMA and LSTM
in Forecasting Time Series,” in 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), Orlando, FL, Dec. 2018, pp. 1394–1401. doi:
1109/ICMLA.2018.00227.
N. Milosevic, “Equity forecast: Predicting long term stock price movement using machine
learning.” arXiv, Nov. 22, 2018. doi: 10.48550/arXiv.1603.00751.
J. Sen, “Stock Price Prediction Using Machine Learning and Deep Learning Frameworks”,
Accessed: Dec. 14, 2022. [Online]. Available:
https://www.academia.edu/38029599/Stock_Price_Prediction_Using_Machine_Learning_a
nd_Deep_Learning_Frameworks.
E. Mussumeci and F. C. Coelho, “Machine-learning forecasting for Dengue epidemics -
Comparing LSTM, Random Forest and Lasso regression,” Public and Global Health,
preprint, Jan. 2020. doi: 10.1101/2020.01.23.20018556.
B. Abdualgalil, S. Abraham, W. M. Ismael, and D. George, “Modeling and Forecasting
Tuberculosis Cases Using Machine Learning and Deep Learning Approaches: A Comparative
Study,” in Data Management, Analytics and Innovation, vol. 137, S. Goswami, I. S. Barara,
A. Goje, C. Mohan, and A. M. Bruckstein, Eds. Singapore: Springer Nature Singapore, 2023,
pp. 157–171. doi: 10.1007/978-981-19-2600-6_11.
S. Mehtab, J. Sen, and A. Dutta, “Stock Price Prediction Using Machine Learning and LSTMBased Deep Learning Models,” in Machine Learning and Metaheuristics Algorithms, and
Applications, vol. 1366, S. M. Thampi, S. Piramuthu, K.-C. Li, S. Berretti, M. Wozniak, and
D. Singh, Eds. Singapore: Springer Singapore, 2021, pp. 88–106. doi: 10.1007/978-981-16-
-5_8.
S. Ismail and A. Shabri, “Time Series Forecasting using Least Square Support Vector
Machine for Canadian Lynx Data,” Jurnal Teknologi, vol. 70, no. 5, Sep. 2014, doi:
11113/jt.v70.3510.
P. J. Bastos, “Thesis Title: Bear Market Prediction Using Logistic Regression, Random
Forest, and XGBoost”, November. 2019, Available:
https://fenix.tecnico.ulisboa.pt/downloadFile/1689244997259684/thesis80959pb.pdf.
A. Triyono, R. B. Trianto, and D. M. P. Arum, “Penerapan Least Squares Support Vector
Machines (LSSVM) dalam Peramalan Indonesia Composite Index,” JIUP, vol. 6, no. 1, p.
, Mar. 2021, doi: 10.32493/informatika.v6i1.10237.
DOI: https://doi.org/10.24167/proxies.v9i1.13269
Copyright (c) 2025 Proxies : Jurnal Informatika
View My Stats





