PREDICTING EMPLOYEE ATTRITION USING TABNET
Abstract
Keywords
Full Text:
PDFReferences
S. Arqawi et al., “Predicting Employee Attrition and Performance Using Deep Learning,” Journal of Theoretical and Applied Information Technology, vol. 100, no. 21, 2022, [Online]. Available: http://www.jatit.org/volumes/Vol100No21/21Vol100No21.pdf
S. Al-Darraji, D. G. Honi, F. Fallucchi, A. I. Abdulsada, R. Giuliano, and H. A. Abdulmalik, “Employee Attrition Prediction Using Deep Neural Networks,” Computers, vol. 10, no. 11, Art. no. 11, Nov. 2021, doi: 10.3390/computers10110141.
C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Apr. 14, 2021, arXiv: arXiv:2104.05314. doi: 10.48550/arXiv.2104.05314.
P. M. Usha and N. V. Balaji, “A comparative study on machine learning algorithms for employee attrition prediction,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 1085, no. 1, p. 012029, Feb. 2021, doi: 10.1088/1757-899X/1085/1/012029.
F. K. Alsheref, I. E. Fattoh, and W. M. Ead, “Automated Prediction of Employee Attrition Using Ensemble Model Based on Machine Learning Algorithms,” Computational Intelligence and Neuroscience, vol. 2022, Jun. 2022, doi: 10.1155/2022/7728668.
P. K. Jain, M. Jain, and R. Pamula, “Explaining and predicting employees’ attrition: a machine learning approach,” SN Appl. Sci., vol. 2, no. 4, p. 757, Mar. 2020, doi: 10.1007/s42452-020-2519-4.
A. Raza, K. Munir, M. Almutairi, F. Younas, and M. M. S. Fareed, “Predicting Employee Attrition Using Machine Learning Approaches,” Applied Sciences, vol. 12, no. 13, Art. no. 13, Jan. 2022, doi: 10.3390/app12136424.
F. Fallucchi, M. Coladangelo, R. Giuliano, and E. William De Luca, “Predicting Employee Attrition Using Machine Learning Techniques,” Computers, vol. 9, no. 4, Art. no. 4, Dec. 2020, doi: 10.3390/computers9040086.
A. Qutub, A. Al-Mehmadi, M. Al-Hssan, R. Aljohani, and H. S. Alghamdi, “Prediction of Employee Attrition Using Machine Learning and Ensemble Methods,” IJMLC, vol. 11, no. 2, pp. 110–114, Mar. 2021, doi: 10.18178/ijmlc.2021.11.2.1022.
F. Alsubaie and M. Aldoukhi, “Using machine learning algorithms with improved accuracy to analyze and predict employee attrition,” Decision Science Letters, vol. 13, no. 1, pp. 1–18, 2024, doi: 10.5267/j.dsl.2023.12.006.
N. Mansor, N. S. Sani, and M. Aliff, “Machine Learning for Predicting Employee Attrition,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 12, no. 11, Art. no. 11, Jan. 2021, doi: 10.14569/IJACSA.2021.0121149.
S. O. Arik and T. Pfister, “TabNet: Attentive Interpretable Tabular Learning,” arXiv.org, Aug. 2019, doi: 10.48550/arXiv.1908.07442.
M. Hosni, “Encoding Techniques for Handling Categorical Data in Machine Learning-Based Software Development Effort Estimation,” presented at the International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, SCITEPRESS, Nov. 2023, pp. 460–467. doi: 10.5220/0012259400003598.
M. R. Hossain and D. D. Timmer, “Machine Learning Model Optimization with Hyper Parameter Tuning Approach,” Global Journal of Computer Science and Technology, vol. 21, no. D2, pp. 7–13, Sep. 2021.
L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based models still outperform deep learning on tabular data?,” Jul. 18, 2022, arXiv: arXiv:2207.08815. doi: 10.48550/arXiv.2207.08815.
DOI: https://doi.org/10.24167/proxies.v8i2.13213
Copyright (c) 2025 Proxies : Jurnal Informatika
View My Stats