Implementation Algorithm C4.5 To Find Recommendation From Gym Exercise Data
Abstract
Sport has become an important aspect of human health. One of the most common issues that discovered when participating in sports is a lack of knowledge about the sport itself. The purpose of this research is to generate recommendations from implementing the C4.5 algorithm and the Decision Tree. The research will also carry out several methods such as pre-processing consisting of Data Cleaning, Feature Selection, and Data Transformation to deliver the best data results. Data that used in this research is movement data at the gym. The performance of the C4.5 algorithm is determined by performing Validation and Testing, for this case which is include Accuracy, Precision, and Recall. This research will produce recommendations from the implementation of C4.5, the previously mentioned Decision Tree results will be examined so that a recommendation can be made.
Keywords
Full Text:
PDFReferences
F. J. Reynara, S. Carolina, and I. N. Simbolon, “The Comparison of C4.5 and CART (Classification and Regression Tree) Algorithm in Classification of Occupation for Fresh Graduate,” 2022, doi: 10.4108/eai.27-11-2021.2315527.
A. Cherfi, K. Nouira, and A. Ferchichi, “Very Fast C4.5 Decision Tree Algorithm,” Appl. Artif. Intell., vol. 32, no. 2, 2018, doi: 10.1080/08839514.2018.1447479.
K. Myint and H. H. Khaung Tin, “Analyzing the Comparison of C4.5, CART and C5.0 Algorithms on Heart Disease Dataset using Decision Tree Method,” pp. 1–10, 2021, doi: 10.4108/eai.27-2-2020.2303221.
H. Sulistiani and A. A. Aldino, “Decision Tree C4.5 Algorithm for Tuition Aid Grant Program Classification (Case Study: Department of Information System, Universitas Teknokrat Indonesia),” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, 2020, doi: 10.21107/edutic.v7i1.8849.
Suryani, D. Rahmadani, A. A. Muzafar, A. Hamid, R. Annisa, and Mustakim, “Analisis Perbandingan Algoritma C4.5 dan CART untuk Klasifikasi Penyakit Stroke,” SENTIMAS Semin. Nas. Penelit. dan Pengabdi. Masy., pp. 197–206, 2022, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas
Y. A. Gerhana, I. Fallah, W. B. Zulfikar, D. S. Maylawati, and M. A. Ramdhani, “Comparison of naive Bayes classifier and C4.5 algorithms in predicting student study period,” J. Phys. Conf. Ser., vol. 1280, no. 2, 2019, doi: 10.1088/1742-6596/1280/2/022022.
J. Teknik, I. C. I. T. Medicom, W. Leonardi, H. Weide, D. Cantona, and G. M. Hutagalung, “Comparison of data mining algorithms ( random forest , C4 . 5 , catboost ) based on adaptive boosting in predicting diabetes mellitus,” vol. 16, no. 1, pp. 1–12, 2024.
M. A. Muslim, S. H. Rukmana, E. Sugiharti, B. Prasetiyo, and S. Alimah, “Optimization of C4.5 algorithm-based particle swarm optimization for breast cancer diagnosis,” J. Phys. Conf. Ser., vol. 983, no. 1, 2018, doi: 10.1088/1742-6596/983/1/012063.
Y. Mardi, “Data Mining Rekam Medis Untuk Menentukan Penyakit Terbanyak Menggunakan Decision Tree C4.5,” J. Sains dan Inform., vol. 4, no. 1, pp. 40–53, 2018, doi: 10.22216/jsi.v4i1.3077.
Gunawan, Hanes, and Catherine, “C4.5, K-Nearest Neighbor, Naïve Bayes and Random Forest Algorithms Comparison to Predict Students’ On Time Graduation,” Indones. J. Artif. Intell. Data Min., vol. 4, no. 2, pp. 62–71, 2021, [Online]. Available: http://dx.doi.org/10.24014/ijaidm.v4i2.10833
DOI: https://doi.org/10.24167/proxies.v9i1.13050
Copyright (c) 2025 Proxies : Jurnal Informatika
View My Stats




