COMPARISON K-NN REGRESSION AND SVR MSE IN 5 MOST ACTIVE STOCK BASED ON HISTORICAL DATA
Abstract
Keywords
Full Text:
PDFReferences
R. K. Nayak, D. Mishra, and A. K. Rath, “A Naïve SVM-KNN based stock market trend reversal analysis for Indian benchmark indices,” Appl. Soft Comput., vol. 35, pp. 670–680, Oct. 2015, doi: 10.1016/j.asoc.2015.06.040.
V. Sarala, “Stock Market Trend Prediction Using K-Nearest Neighbor (KNN) Algorithm,” J. Eng. Sci., vol. 13, no. 08, 2022.
K. Nakagawa, M. Imamura, and K. Yoshida, “Stock Price Prediction with Fluctuation Patterns Using Indexing Dynamic Time Warping and $$k^*$$-Nearest Neighbors,” in New Frontiers in Artificial Intelligence, S. Arai, K. Kojima, K. Mineshima, D. Bekki, K. Satoh, and Y. Ohta, Eds., Cham: Springer International Publishing, 2018, pp. 97–111. doi: 10.1007/978-3-319-93794-6_7.
O. D. Madeeh and H. S. Abdullah, “An Efficient Prediction Model based on Machine Learning Techniques for Prediction of the Stock Market,” J. Phys. Conf. Ser., vol. 1804, no. 1, p. 012008, Feb. 2021, doi: 10.1088/1742-6596/1804/1/012008.
M. Ghosh and R. Gor, “STOCK PRICE PREDICTION USING SUPPORT VECTOR REGRESSION AND K-NEAREST NEIGHBORS: A COMPARISON,” International Journal of Engineering Science Technologies, vol. 6, no. 4, Art. no. 4, Jul. 2022, doi: 10.29121/ijoest.v6.i4.2022.354.
M. Rehman, M. Fuzail, M. K. Abid, and N. Aslam, “Financial Prices Prediction of Stock Market using Supervised Machine Learning Models,” VFAST Transactions on Software Engineering, vol. 11, no. 2, Art. no. 2, May 2023, doi: 10.21015/vtse.v11i2.1439.
Y. Huang, “Research on the Google Stock Price Prediction Based on SVR, Random Forest, and KNN Models,” Highlights in Business, Economics and Management, vol. 24, pp. 1054–1058, Jan. 2024, doi: 10.54097/n8hxqx19.
S. Islam, Md. S. Sikder, Md. F. Hossain, and P. Chakraborty, “Predicting the daily closing price of selected shares on the Dhaka Stock Exchange using machine learning techniques,” SN Bus Econ, vol. 1, no. 4, p. 58, Mar. 2021, doi: 10.1007/s43546-021-00065-6.
J. Kaliappan, K. Srinivasan, S. Mian Qaisar, K. Sundararajan, C.-Y. Chang, and S. C, “Performance Evaluation of Regression Models for the Prediction of the COVID-19 Reproduction Rate,” Front. Public Health, vol. 9, Sep. 2021, doi: 10.3389/fpubh.2021.729795.
H. Zhao and Y. Chen, “A Comparative Study for Temperature Prediction by Machine Learning and Deep Learning,” in 2023 International Conference on Intelligent Computing and Control (IC&C), Feb. 2023, pp. 77–84. doi: 10.1109/IC-C57619.2023.00020.
DOI: https://doi.org/10.24167/proxies.v8i2.13002
Copyright (c) 2025 Proxies : Jurnal Informatika
View My Stats