ENHANCING STROKE DISEASE PREDICTION PERFORMANCE THROUGH A FUSION OF ADABOOST WITH C4.5 AND K-NEAREST NEIGHBOR ALGORITHMS

Hanny Lutfy Damayanti, Rosita Herawati

Abstract


Stroke is one of the most serious medical conditions and has a significant impact on public health. The importance of accurate prediction of stroke risk is to provide appropriate treatment and intervention to individuals at risk of developing the disease. In recent years, the use of machine learning methods has become popular in improving stroke disease prediction. This research implements the Adaboost method to the C4.5 and K-Nearest Neighbor (KNN) algorithms with the aim of improving stroke prediction performance. Using relevant datasets, the C4.5 and KNN algorithms were used separately to perform stroke disease prediction. Furthermore, the Adaboost method is used to combine the prediction results of the two algorithms. The results showed that the implementation of the Adaboost method on the C4.5 and KNN algorithms successfully improved the performance of stroke disease prediction, providing more accurate and reliable predictions to assist in the diagnosis and treatment of stroke disease. With a value of 91% for the combination of KNN with Adaboost and 95% for the combination of C4.5 with Adaboost. Both have a difference in value of 4%. Therefore, C4.5 is more effective in improving the performance of stroke disease prediction.


Keywords


stroke, c4.5; knn; adaboost

Full Text:

PDF

References


A. Byna and M. Basit, “PENERAPAN METODE ADABOOST UNTUK MENGOPTIMASI PREDIKSI PENYAKIT STROKE DENGAN ALGORITMA NAÏVE BAYES,” SISFOKOM, vol. 9, no. 3, pp. 407–411, Nov. 2020, doi: 10.32736/sisfokom.v9i3.1023.

Y. Oktarina and S. Mulyani, “EDUKASI KESEHATAN PENYAKIT STROKE PADA LANSIA,” vol. 3, 2020, doi: 10.22437/medicaldedication.v3i2.11220.

K. L. Kohsasih and Z. Situmorang, “Analisis Perbandingan Algoritma C4.5 dan Naïve Bayes Dalam Memprediksi Penyakit Cerebrovascular,” Jurnal Penelitian Teknik Informatika, Manajemen Informatika dan Sistem Informasi, vol. 9, no. 1, pp. 13–17, Apr. 2022, doi: 10.31294/inf.v9i1.11931.

R. Novita, “Teknik Data Mining : Algoritma C 4.5”.

N. Novianti, M. Zarlis, and P. Sihombing, “Penerapan Algoritma Adaboost Untuk Peningkatan Kinerja Klasifikasi Data Mining Pada Imbalance Dataset Diabetes,” mib, vol. 6, no. 2, p. 1200, Apr. 2022, doi: 10.30865/mib.v6i2.4017.

A. Puspitawuri, E. Santoso, and C. Dewi, “Diagnosis Tingkat Risiko Penyakit Stroke Menggunakan Metode K-Nearest Neighbor dan Naïve Bayes”.

L. Pebrianti, F. Aulia, and H. Nisa, “Implementasi Metode Adaboost untuk Mengoptimasi Klasifikasi Penyakit Diabetes dengan Algoritma Naïve Bayes”, vol. 7, no. 2, 2022, doi: 10.32528/justindo.v7i2.8627.

R. E. Pambudi, “Klasifikasi Penyakit Stroke Menggunakan Algoritma Decision Tree C.45,” vol. 16, no. 02, doi: 10.5281/zenodo.7535865.

A. Rohman, V. Suhartono, and C. Supriyanto, “PENERAPAN ALGORITMA C4.5 BERBASIS ADABOOST UNTUK PREDIKSI PENYAKIT JANTUNG,” vol. 13, 2017, doi: 10.25126/jtiik.2020752379.

A. F. Hermawan, F. R. Umbara, and F. Kasyidi, “Prediksi Awal Penyakit Stroke Berdasarkan Rekam Medis menggunakan Metode Algoritma CART(Classification and Regression Tree)”, vol. 7, no. 2, 2022, doi: 10.26760/mindjournal.v7i2.151-164.

D. C. P. B. - STMIK Nusa Mandiri Jakarta, “Prediksi Penyakit Hepatitis Menggunakan Algoritma Naïve Bayes Dengan Seleksi Fitur Algoritma Genetika,” EVOLUSI, vol. 6, no. 2, Sep. 2018, doi: 10.31294/evolusi.v6i2.4381.

P. Handayani, E. Nurlelah, M. Raharjo, and P. M. Ramdani, “Prediksi Penyakit Liver Dengan Menggunakan Metode Decision Tree dan Neural Network,” Com, Engine, Sys, Sci, vol. 4, no. 1, p. 55, Feb. 2019, doi: 10.24114/cess.v4i1.11528.

D. Larassati, A. Zaidiah, and S. Afrizal, “Sistem Prediksi Penyakit Jantung Koroner Menggunakan Metode Naive Bayes,” jipi. jurnal. ilmiah. penelitian. dan. pembelajaran. informatika., vol. 7, no. 2, pp. 533–546, May 2022, doi: 10.29100/jipi.v7i2.2842.




DOI: https://doi.org/10.24167/proxies.v7i2.12470

Copyright (c) 2024 Proxies : Jurnal Informatika



View My Stats