COMPARISON OF RANDOM FOREST ALGORITHM ACCURACY WITH XGBOOST USING HYPERPARAMETERS

Kevin Stefanus, Hironimus Leong

Abstract


Diabetes is one of the most dangerous diseases in the world and many people do not realize that they have diabetes in them. So many factors affect the occurrence of diabetes such as pregnancies, glucose, blood pressure, skinthickness, insulin, BMI, diabetes pedigree function, and age. so diabetes threatens silently and will appear suddenly. Therefore, this study will make a diabetes prediction using Random Forest and XGBoost algorithms. The model will be evaluated with accuracy, F1-Score, recall, and precision. for randomization or random s

tate will use random states 0 and 45. The results obtained from the comparison of these two algorithms are the highest accuracy of the random forest algorithm has a value of 88,98% while the highest accuracy of XGBoost gets an accuracy value of 87,00% at random state 45 and data division 90/10, while random state 0 random forest has the highest accuracy value also with a value of 78,43% with data division 90/10 while XGBoost gets the highest accuracy value of 76,47% at data division 90/10. It can be concluded that random forest is better at predicting diabetes data than the XGBoost algorithm.



Keywords


Prediction; Random Forest; XGBoost; Accuracy; Hyperparameters

Full Text:

PDF

References


M. K. Nasution, RD. R. Saedudin, V. P. Widartha “perbandingan akurasi algoritma naïve Andryan, M. R., Fajri, M., & Sulistyowati, N. (2022). KOMPARASI KINERJA ALGORITMA XGBOOST DAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) UNTUK DIAGNOSA PENYAKIT KANKER PAYUDARA. Jurnal Informatika dan Komputer, 1-5.

https://ejournal.akakom.ac.id/index.php/jiko/article/download/500/pdf

Apriliah, W., Kurniawan, I., Baydhowi, M., & Haryati, T. (2021, januari). Prediksi Kemungkinan Diabetes Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest. Jurnal Sistem Informasi, 10, 163-171.

http://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/1129

Derisma. (2020). Perbandingan Kinerja Algoritma Untuk Prediksi Penyakit Jantung Dengan Teknik Data Mining. Journal of Applied Informatics and Computing, 4, 84-88.

https://www.researchgate.net/publication/344979585_Perbandingan_Kinerja_Algor itma_untuk_Prediksi_Penyakit_Jantung_dengan_Teknik_Data_Mining

Erdiansyah, U., Lubis, A. I., & Erwansyah, K. (2022, Januari). Komparasi Metode K-Nearest Neigbhor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil. JURNAL MEDIA INFORMATIKA BUDIDARMA, 208-214.

https://ejurnal.stmik-budidarma.ac.id/index.php/mib/article/view/3373

Givari, M. R., Sulaeman, M. R., & Umaidah, Y. (2022). Perbandingan Algoritma SVM, Random Forest Dan XGBoost Untuk Penentuan Persetujuan Pengajuan Kredit. JURNAL NUANSA INFORMATIKA , 1-9.

https://journal.uniku.ac.id/index.php/ilkom/article/view/5406/2901

Hendrawan, I. R. (2022). PERBANDINGAN ALGORITMA NAÏVE BAYES, SVM DAN XGBoost Dalam Klasifikasi Teks Sentimen Masyarakat Terhadap Produk Lokal Di Indonesia . Jurnal TRANSFORMASI , 1-6.

https://ejournal.stmikbinapatria.ac.id/index.php/JT/article/view/295/191

Mursianto, G. A., Falih, I. M., Irfan, M., Sakinah, T., & Prasvita, D. S. (2021). Perbandingan Metode Klasifikasi Random Forest dan XGBoost Serta. Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), 1-10.

https://conference.upnvj.ac.id/index.php/senamika/article/download/1627/1340

Nasution, M. K., Saedudin, R. R., & Widartha, V. P. (2021). PERBANDINGAN AKURASI ALGORITMA NAÏVE BAYES DAN ALGORITMA XGBOOST PADA KLASIFIKASI PENYAKIT DIABETES. e-Proceeding of Engineering , 1-8.

https://docplayer.info/222292164-Perbandingan-akurasi-algoritma-naive-bayes- dan-algoritma-xgboost-pada-klasifikasi-penyakit-diabetes.html

Supriyadi, R., Gata, W., Maulidah, N., & Fauzi, A. (2020). Penerapan Algoritma Random Forest Untuk Menentukan . JURNAL ILMIAH EKONOMI DAN BISNIS, 1-9.

https://journal.stekom.ac.id/index.php/Bisnis/article/download/247/182

Syukron, M., Santoso, R., & Widiharih, T. (2020). PERBANDINGAN METODE SMOTE RANDOM FOREST DAN SMOTE XGBOOST. JURNAL GAUSSIAN, 9, 227 - 236.

https://ejournal3.undip.ac.id/index.php/gaussian/article/download/28915/24507




DOI: https://doi.org/10.24167/proxies.v7i1.12464

Copyright (c) 2024 Proxies : Jurnal Informatika



View My Stats