SENTIMENT ANALYSIS OF YOUTUBE COMMENTS ABOUT INDONESIAN LGBT USING SUPPORT VECTOR MACHINE AND NAÏVE BAYES ALGORITHMS
Abstract
YouTube is a social media that is widely used by content creators to publish their work, including LGBT content. Because of this content, many viewers end up expressing their opinions through comments. This research aims to see which is the best algorithm between Support Vector Machine using two kernels, linear kernel and RBF kernel or Naive Bayes using multinomial naive bayes seen from confusion matrix. Also, to see which pre-processing is best used for sentiment analysis by dividing pre-processing into several parts. Support Vector Machine using RBF kernel is the best algorithm in this research with 77% accuracy with precision for sentiment -1 74%, recall 72% and f1-score 72%. For sentiment 0, 70% for precision, 81% for recall, and 75% for f1-score. And the last, for sentiment 1, with 90% precision, 77% recall and 83% f1-score. In addition, pre-processing using stemming-tokenizing is the best pre-processing used for sentiment analysis in this research based on the highest average number.
Keywords
Full Text:
PDFReferences
A. P. Giovani, Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” Jurnal TEKNOINFO, vol. Vol. 14, No. 2, 2020, 116-124, 2020, doi: 10.33365/jti.v14i2.679.
S. Fanissa, M. A. Fauzi, and S. Adinugroho, “Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking,” vol. Vol. 2, p. hlm. 2766-2770, Agustus 2018, https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1962.
S. Ernawati and R. Wati, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Review Agen Travel,” URNAL KHATULISTIWA INFORMATIKA, vol. VOL. VI, Jun. 2018, https://ejournal.bsi.ac.id/ejurnal/index.php/khatulistiwa/article/view/3802/.
A. Rahman Isnain, A. Indra Sakti, D. Alita, and N. Satya Marga, “SENTIMEN ANALISIS PUBLIK TERHADAP KEBIJAKAN LOCKDOWN PEMERINTAH JAKARTA MENGGUNAKAN ALGORITMA SVM,” JDMSI, vol. Vol. 2, pp. 31–37, 2021, https://ejurnal.teknokrat.ac.id/index.php/JDMSI/article/view/1021.
S. Hikmawan, A. Pardamean, and S. Nur Khasanah, “Sentimen Analisis Publik Terhadap Joko Widodo Terhadap Wabah Covid-19 Menggunakan Metode Machine Learning,” Jurnal Kajian Ilmiah (JKI), vol. Vol. 20, p. Halaman: 167-176, Mei 2020, https://ejurnal.ubharajaya.ac.id/index.php/JKI/article/view/117.
Ratino, NoorHafidz, S. Anggraeni, and W. Gata, “Sentimen Analisis Informasi Covid 19 menggunakan Support Vector Machine dan Naïve Bayes,” Jurnal JUPITER, vol. Vol. 12, pp. 1–11, Bulan Tahun 2020, https://jurnal.polsri.ac.id/index.php/jupiter/article/view/2388.
A. Maureen Pudjajana and D. Manongga, “SENTIMEN ANALISIS TWEET PORNOGRAFI KAUM HOMOSEKSUAL INDONESIA DI TWITTER DENGAN NAIVE BAYES,” Jurnal SIMETRIS, vol. Vol. 9, Apr. 2018, https://jurnal.umk.ac.id/index.php/simet/article/view/1922.
I. Najiyah and I. Haryanti, “SENTIMEN ANALISIS COVID - 19 DENGAN METODE PROBABILISTIC NEURAL NETWORK DAN TF - IDF,” JURNAL RESPONSIF, vol. Vol. 3, pp. 100–111, Feb. 2021, https://ejurnal.ars.ac.id/index.php/jti/article/view/488.
R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi menggunakan Algoritma K-Nearest Neighbor,” Jurnal Sains dan Manajemen, vol. Vol 8, Mar. 2020, https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/7371.
R. Siringoringo and Jamaluddin, “Text Mining dan Klasterisasi Sentimen Pada Ulasan Produk Toko Online,” Jurnal Penelitian Teknik Informatika Universitas Prima Indonesia (UNPRI), vol. Volume 2, Apr. 2019, http://jurnal.unprimdn.ac.id/index.php/JUTIKOMP/article/view/456.
R. Rumajar, “Analisis Sentimen Tweet Sicepat Menggunakan SVM,” 2022. Accessed: Apr. 16, 2023. [Online]. Available: https://www.kaggle.com/code/ranodeyansarumajar/analisis-sentimen-tweet-sicepat-menggunakan-svm
A. Munna, “Analisis Sentimen Aplikasi Gojek di Playstore Menggunakan Python dengan Algoritma Random Forest, SVM dan Naive Bayes,” 2022. Accessed: Jun. 23, 2023. [Online]. Available: https://medium.com/@aliyatulmunna7/analisis-sentimen-aplikasi-gojek-di-playstore-menggunakan-python-dengan-algoritma-random-forest-2e5504090f9b
K. Khasanahh, “Analisis Sentimen Ulasan Aplikasi Shopee di google play store Menggunakan Metode Klasifikasi Algoritma Naive Bayes,” 2023. Accessed: Jun. 15, 2023. [Online]. Available: https://github.com/KhuswatunHasanahh/sentimen-shopee/blob/main/Analisis_Sentimen_Ulasan_Aplikasi_Shopee_di_google_play_store_Menggunakan_Metode_Klasifikasi_Algoritma_Naive_Bayes.ipynb
DOI: https://doi.org/10.24167/proxies.v6i2.12458
Copyright (c) 2024 Proxies : Jurnal Informatika
View My Stats