COMPARISON OF EXTREME GRADIENT BOOSTING ALGORITHM AND ARTIFICIAL NEURAL NETWORK ON DIABETES PREDICTION
Abstract
Keywords
Full Text:
PDFReferences
Jasim, I. S., Deniz Duru, A., Shaker, K., Abed, B. M., & Saleh, H. M. (2017). Evaluation and measuring classifiers of diabetes diseases. 2017 International Conference on Engineering and Technology (ICET), 1–4. https://doi.org/10.1109/ICEngTechnol.2017.8308165
Sarwar, M. A., Kamal, N., Hamid, W., & Shah, M. A. (2018). Prediction of Diabetes Using Machine Learning Algorithms in Healthcare. 2018 24th International Conference on Automation and Computing (ICAC), 1–6. https://doi.org/10.23919/IConAC.2018.8748992
Hughes, J. A., Houghten, S., & Brown, J. A. (2020). Models of Parkinson’s Disease Patient Gait. IEEE Journal of Biomedical and Health Informatics, 24(11), 3103–3110. https://doi.org/10.1109/JBHI.2019.2961808
Zhang, Y., Lin, Z., Kang, Y., Ning, R., & Meng, Y. (2018). A Feed-Forward Neural Network Model For The Accurate Prediction Of Diabetes Mellitus. 7(8), 5. https://www.ijstr.org/final-print/aug2018/A-Feed-forward-Neural-Network-Model-For-The-Accurate-Prediction-Of-Diabetes-Mellitus-.pdf
Lakhwani, K., Bhargava, S., Hiran, K. K., Bundele, M. M., & Somwanshi, D. (2020). Prediction of the Onset of Diabetes Using Artificial Neural Network and Pima Indians Diabetes Dataset. 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 1–6. https://doi.org/10.1109/ICRAIE51050.2020.9358308
Sonar, P., & JayaMalini, K. (2019). Diabetes Prediction Using Different Machine Learning Approaches. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), 367–371. https://doi.org/10.1109/ICCMC.2019.8819841
Akter, T., Khan, Md. I., Ali, M. H., Satu, Md. S., Uddin, Md. J., & Moni, M. A. (2021). Improved Machine Learning based Classification Model for Early Autism Detection. 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 742–747. https://doi.org/10.1109/ICREST51555.2021.9331013
Sun, X. (2021). Application and Comparison of Artificial Neural Networks and XGBoost on Alzheimer’s Disease. Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing, 101–105. https://doi.org/10.1145/3448748.3448765
Srivastava, S., Sharma, L., Sharma, V., Kumar, A., & Darbari, H. (2019). Prediction of Diabetes Using Artificial Neural Network Approach. In K. Ray, S. N. Sharan, S. Rawat, S. K. Jain, S. Srivastava, & A. Bandyopadhyay (Eds.), Engineering Vibration, Communication and Information Processing (Vol. 478, pp. 679–687). Springer Singapore. https://doi.org/10.1007/978-981-13-1642-5_59
Sisodia, D., & Sisodia, D. S. (2018). Prediction of Diabetes using Classification Algorithms. Procedia Computer Science, 132, 1578–1585. https://doi.org/10.1016/j.procs.2018.05.122
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
Mubarok, M. R., & Herteno, R. (2022). HYPER-PARAMETER TUNING PADA XGBOOST UNTUK PREDIKSI KEBERLANGSUNGAN HIDUP PASIEN GAGAL JANTUNG. 09, 11.
Phan, Q.-T., Wu, Y.-K., & Phan, Q.-D. (2020). A Comparative Analysis of XGBoost and Temporal Convolutional Network Models for Wind Power Forecasting. 2020 International Symposium on Computer, Consumer and Control (IS3C), 416–419. https://doi.org/10.1109/IS3C50286.2020.00113
Hossain, R., & Timmer, D. D. (2021). Machine Learning Model Optimization with Hyper Parameter Tuning Approach. 8.
Frimpong, E. A., Oluwasanmi, A., Baagyere, E. Y., & Zhiguang, Q. (2021). A feedforward artificial neural network model for classification and detection of type 2 diabetes. Journal of Physics: Conference Series, 1734(1), 012026. https://doi.org/10.1088/1742-6596/1734/1/012026
Ubaidillah, R., Muliadi, M., Nugrahadi, D. T., Faisal, M. R., & Herteno, R. (2022). Implementasi XGBoost Pada Keseimbangan Liver Patient Dataset dengan SMOTE dan Hyperparameter Tuning Bayesian Search. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(3), 1723. https://doi.org/10.30865/mib.v6i3.4146
Budholiya, K., Shrivastava, S. K., & Sharma, V. (2022). An optimized XGBoost based diagnostic system for effective prediction of heart disease. Journal of King Saud University - Computer and Information Sciences, 34(7), 4514–4523. https://doi.org/10.1016/j.jksuci.2020.10.013
DOI: https://doi.org/10.24167/proxies.v5i1.12443
Copyright (c) 2024 Proxies : Jurnal Informatika
View My Stats