SENTIMENT ANALYSIS COVID VACCINE ON TWITTER USING SVM ALGORITHM
Abstract
Currently there are still many people who have not been vaccinated. many people comment on social media, especially the twitter application, to provide opinions and comments about the covid vaccine in Indonesia. In order to find out which tweets appeared including positive comments or negative comments, an analysis was carried out to find out how many negative and positive comments were by sentiment analysis. This study analyzes comments taken from the twitter application using the crawling method. Furthermore, pre-processing will be carried out such as case folding, tokenization, and stopword filtering. Then before the classification is carried out, data labeling and data split will be carried out to facilitate classification. After that, classification will be carried out using the SVM algorithm method. The final result of this research project is that there are 9981 data obtained from the crawling method. This data proves that 92.4% of Indonesians gave a neutral response to the topic of the Covid vaccine on the Twitter application. The SVM algorithm is easy to use in the implementation of sentiment analysis. And the accuracy results obtained using the SVM method are very high at 90.5%.
Keywords
Full Text:
PDFReferences
W. Athira, I. Gholissodin, and rizal setya Perdana, “Analisis Sentimen Cyberbullying Pada Komentar
Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ.
Brawijaya, vol. 2, no. 11, pp. 4704–4713, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-
ptiik/article/view/3051.
A. Syakuro, “Pada Media Sosial Menggunakan Metode Naïve Bayes Classifier ( NBC ) Dengan Seleksi Fitur
Information Gain ( IG ) Halaman Judul Skripsi Oleh : Abdan Syakuro,” Anal. sentimen Masy. terhadap e-commerce
pada media Sos. menggunakan Metod. naive bayes Classif. dengan Sel. fitur Inf. gain, pp. 1–89, 2017, [Online].
Available: http://etheses.uin-malang.ac.id/11706/.
R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest
Neighbor (K-Nn),” EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 10–17, 2020, doi: 10.31294/evolusi.v8i1.7371.
https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/7371
S. S. Salim and J. Mayary, “Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode
Lexicon Based Dan K – Nearest Neighbor,” J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 1–17, 2020, doi:
35760/ik.2020.v25i1.2411. https://ejournal.gunadarma.ac.id/index.php/infokom/article/view/2411
N. Y. A. Faradhillah, “Analisis Sentimen Terhadap Kinerja Pelayanan Publik Di Kota Surabaya Berdasarkan
Klasifikasi Komentar Di Media Sosial Dengan Menggunakan Algoritma Naïve Bayes,” 2016, [Online]. Available:
https://repository.its.ac.id/id/eprint/63202.
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data
Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–
, 2020, doi: 10.21107/edutic.v7i1.8779. https://journal.trunojoyo.ac.id/edutic/article/view/8779
H. Rachmi, “Penerapan Principal Component Analysis Dan Genetic Algorithm Pada Analisis Sentimen Review
Pengiriman Barang Menggunakan Algoritma Support Vector Machine,” Evolusi J. Sains dan Manaj., vol. 5, no. 2,
pp. 97–104, 2017, doi: 10.31294/evolusi.v5i2.3130.
https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/3130
A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan
Metode K-Nearest Neighbor,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, p. 1, 2018, doi:
14421/jiska.2018.31-01. http://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/31-01
A. W. Attabi, L. Muflikhah, and M. A. Fauzi, “Penerapan Analisis Sentimen untuk Menilai Suatu Produk pada
Twitter Berbahasa Indonesia dengan Metode Naïve Bayes Classifier dan Information Gain,” J. Pengemb. Teknol.
Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4548–4554, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-
ptiik/article/view/2984. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2984
A. Herdhianto, Sentiment Analysis Menggunakan Naïve Bayes Classifier (NBC) Pada Tweet Tentang Zakat.
http://repository.uinjkt.ac.id/dspace/handle/123456789/53661
DOI: https://doi.org/10.24167/proxies.v4i1.12436
Copyright (c) 2024 Proxies : Jurnal Informatika
View My Stats