SENTIMENT ANALYSIS COVID VACCINE ON TWITTER USING SVM ALGORITHM

Ratna Akila Reta, Rosita Herawati Rosita Herawati

Abstract


Currently there are still many people who have not been vaccinated. many people comment on social media, especially the twitter application, to provide opinions and comments about the covid vaccine in Indonesia. In order to find out which tweets appeared including positive comments or negative comments, an analysis was carried out to find out how many negative and positive comments were by sentiment analysis. This study analyzes comments taken from the twitter application using the crawling method. Furthermore, pre-processing will be carried out such as case folding, tokenization, and stopword filtering. Then before the classification is carried out, data labeling and data split will be carried out to facilitate classification. After that, classification will be carried out using the SVM algorithm method. The final result of this research project is that there are 9981 data obtained from the crawling method. This data proves that 92.4% of Indonesians gave a neutral response to the topic of the Covid vaccine on the Twitter application. The SVM algorithm is easy to use in the implementation of sentiment analysis. And the accuracy results obtained using the SVM method are very high at 90.5%.


Keywords


SVM; covid; vaccine; twitter

Full Text:

PDF

References


W. Athira, I. Gholissodin, and rizal setya Perdana, “Analisis Sentimen Cyberbullying Pada Komentar

Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ.

Brawijaya, vol. 2, no. 11, pp. 4704–4713, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-

ptiik/article/view/3051.

A. Syakuro, “Pada Media Sosial Menggunakan Metode Naïve Bayes Classifier ( NBC ) Dengan Seleksi Fitur

Information Gain ( IG ) Halaman Judul Skripsi Oleh : Abdan Syakuro,” Anal. sentimen Masy. terhadap e-commerce

pada media Sos. menggunakan Metod. naive bayes Classif. dengan Sel. fitur Inf. gain, pp. 1–89, 2017, [Online].

Available: http://etheses.uin-malang.ac.id/11706/.

R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest

Neighbor (K-Nn),” EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 10–17, 2020, doi: 10.31294/evolusi.v8i1.7371.

https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/7371

S. S. Salim and J. Mayary, “Analisis Sentimen Pengguna Twitter Terhadap Dompet Elektronik Dengan Metode

Lexicon Based Dan K – Nearest Neighbor,” J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 1–17, 2020, doi:

35760/ik.2020.v25i1.2411. https://ejournal.gunadarma.ac.id/index.php/infokom/article/view/2411

N. Y. A. Faradhillah, “Analisis Sentimen Terhadap Kinerja Pelayanan Publik Di Kota Surabaya Berdasarkan

Klasifikasi Komentar Di Media Sosial Dengan Menggunakan Algoritma Naïve Bayes,” 2016, [Online]. Available:

https://repository.its.ac.id/id/eprint/63202.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data

Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–

, 2020, doi: 10.21107/edutic.v7i1.8779. https://journal.trunojoyo.ac.id/edutic/article/view/8779

H. Rachmi, “Penerapan Principal Component Analysis Dan Genetic Algorithm Pada Analisis Sentimen Review

Pengiriman Barang Menggunakan Algoritma Support Vector Machine,” Evolusi J. Sains dan Manaj., vol. 5, no. 2,

pp. 97–104, 2017, doi: 10.31294/evolusi.v5i2.3130.

https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/3130

A. Deviyanto and M. D. R. Wahyudi, “Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan

Metode K-Nearest Neighbor,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 3, no. 1, p. 1, 2018, doi:

14421/jiska.2018.31-01. http://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/31-01

A. W. Attabi, L. Muflikhah, and M. A. Fauzi, “Penerapan Analisis Sentimen untuk Menilai Suatu Produk pada

Twitter Berbahasa Indonesia dengan Metode Naïve Bayes Classifier dan Information Gain,” J. Pengemb. Teknol.

Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4548–4554, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-

ptiik/article/view/2984. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/2984

A. Herdhianto, Sentiment Analysis Menggunakan Naïve Bayes Classifier (NBC) Pada Tweet Tentang Zakat.

http://repository.uinjkt.ac.id/dspace/handle/123456789/53661




DOI: https://doi.org/10.24167/proxies.v4i1.12436

Copyright (c) 2024 Proxies : Jurnal Informatika



View My Stats