OPTIMIZING CNNS FOR FACE RECOGNITION: COMPARING WELL-KNOWN ARCHITECTURES WITH CUSTOM MODELS
Abstract
Keywords
Full Text:
PDFReferences
A. K. Dubey, and V. Jain. “Automatic Facial Recognition Using VGG16 Based Transfer Learning Model.” Journal of Information and Optimization Sciences 41 (7): 1589–96. 2020, doi:10.1080/02522667.2020.1809126. Diakses dari https://sci-hub.scrongyao.com/10.1080/02522667.2020.1809126
N. S. Irjanto and N. Surantha, “Home Security System with Face Recognition based on Convolutional Neural Network,” IJACSA, vol. 11, no. 11, 2020, doi: 10.14569/IJACSA.2020.0111152. Diakses dari https://dx.doi.org/10.14569/IJACSA.2020.0111152
I. Q. Mundial, M. S. Ul Hassan, M. I. Tiwana, W. S. Qureshi, and E. Alanazi, “Towards Facial Recognition Problem in COVID-19 Pandemic,” in 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), Medan, Indonesia: IEEE, Sep. 2020, pp. 210–214. doi: 10.1109/ELTICOM50775.2020.9230504. Diakses dari https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9230504
M. Coskun, A. Ucar, O. Yildirim, and Y. Demir, “Face recognition based on convolutional neural network,” in 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk: IEEE, Nov. 2017, pp. 376–379. doi: 10.1109/MEES.2017.8248937. Diakses dari https://sci.bban.top//pdf//10.1109//MEES.2017.8248937.pdf
S. Almabdy and L. Elrefaei, “Deep Convolutional Neural Network-Based Approaches for Face Recognition,” Applied Sciences, vol. 9, no. 20, p. 4397, Oct. 2019, doi: 10.3390/app9204397. Diakses dari https://www.mdpi.com/2076-3417/9/20/4397/pdf?version=1571881432
E. Winarno, I. Husni Al Amin, H. Februariyanti, P. W. Adi, W. Hadikurniawati, and M. T. Anwar, “Attendance System Based on Face Recognition System Using CNN-PCA Method and Real-time Camera,” in 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia: IEEE, Dec. 2019, pp. 301–304. doi: 10.1109/ISRITI48646.2019.9034596. Diakses dari https://sci-hub.se/10.1109/isriti48646.2019.9034596
S. Chen, Y. Liu, X. Gao, and Z. Han, “MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices,” in Biometric Recognition, J. Zhou, Y. Wang, Z. Sun, Z. Jia, J. Feng, S. Shan, K. Ubul, and Z. Guo, Eds., in Lecture Notes in Computer Science, vol. 10996. Cham: Springer International Publishing, 2018, pp. 428–438. doi: 10.1007/978-3-319-97909-0_46. Diakses dari https://arxiv.org/pdf/1804.07573
University of Computer Studies, Hpa-an, H. P. Pa Win, P. T. Thu Khine, and K. Nwe Ni Tun, “Face Recognition System based on Convolution Neural Networks,” IJIGSP, vol. 13, no. 6, pp. 23–29, Dec. 2021, doi: 10.5815/ijigsp.2021.06.03. Diakses dari https://www.mecs-press.org/ijigsp/ijigsp-v13-n6/IJIGSP-V13-N6-3.pdf
W. Liu, L. Zhou, and J. Chen, “Face Recognition Based on Lightweight Convolutional Neural Networks,” Information, vol. 12, no. 5, p. 191, Apr. 2021, doi: 10.3390/info12050191. Diakses dari https://www.mdpi.com/2078-2489/12/5/191/pdf?version=1619594131
R. Liu, “Face Recognition Based on Convolutional Neural Networks,” HSET, vol. 16, pp. 32–39, Nov. 2022, doi: 10.54097/hset.v16i.2225. Diakses dari https://drpress.org/ojs/index.php/HSET/article/view/2225/2129
K. Yadav, M. Kumar, S. Kumar, and A. K. Tiwari, “Real Time Face Recognition based on Convolution Neural Network,” SSRN Journal, 2019, doi: 10.2139/ssrn.3350324. Diakses dari https://sci.bban.top//pdf//10.2139//ssrn.3350324.pdf
DOI: https://doi.org/10.24167/proxies.v8i2.12558
Copyright (c) 2025 Proxies : Jurnal Informatika
View My Stats