
118

PREDICTING EMPLOYEE ATTRITION USING TABNET

1Evant Valery Wijaya, 2Shinta Estri Wahyuningrum
1,2Program Studi Teknik Informatika Fakultas Ilmu Komputer,

Universitas Katolik Soegijapranata
121k10010@student.unika.ac.id, 2shinta@unika.ac.id

ABSTRACT

High employee turnover may threaten stability and productive working environment in a
company. Not to mention, it is also more costly than retaining existing employees. The key to solve

this problem is to predict employee attrition. Most of the previous researches utilized tree-based
model such as Random Forest or a simple deep learning model such as Multi-layer Perceptron.
This project will include training a TabNet model for the prediction of employee attrition and

comparison of its performance concerning metrics such as accuracy, precision, recall, and F1
score against both a Multi-Layer Perceptron model and a Random Forest model. This study

anticipated that the TabNet model would produce results comparable to other models; however,
TabNet demonstrated lower performance than both the Random Forest and Multi-Layer
Perceptron models. Out of all the models, the Random Forest model performs the best in all key

metrics, followed closely by the Multi-Layer Perceptron model. The results indicate that the tree-
based algorithms seem to be producing better outputs for predicting employee attrition in

structured datasets. The findings of this research offer valuable insights for businesses aiming to
improve employee retention strategies.

Keywords: Employee, Attrition, TabNet, Multi-Layer Perceptron, Random Forest

INTRODUCTION

Employee attrition refers to the number of employees leaving the organization for any

reasons. High turnover threatens the stability and productivity of a company. In addition, high

employee attrition is more costly than to keep the existing ones [1]. It may be due to some reasons

such as heavy workload, poor salary and an unsuitable working environment, etc [2]. Businesses

with the skill to identify these variables and to predict employee attrition are in a position to ensure

the retention of their most valuable and experienced workers at the same time as reducing the

financial losses.

With the current technology, Artificial Intelligence has allowed us to solve complex

predictions, one of which is the attrition of employees [2]. Among Artificial Intelligence

techniques, deep learning have the ability to learn and perform effectively on large datasets, often

surpassing traditional machine learning models in specific applications [3]. However, most

previous researches employed traditional machine learning models such as Random Forest [1],

[4], [5], [6], [7], [8], [9], [10] and simpler deep learning models such as Multi-Layer Perceptron

[1], [5], [11], but none used TabNet. Given that TabNet is a relatively new algorithm, this study

aims to evaluate TabNet’s effectiveness in predicting employee attrition and compare its

performance to Random Forest and Multi-Layer Perceptron.

mailto:21k10010@student.unika.ac.id
mailto:shinta@unika.ac.id

119

The objective of this research is to implement the TabNet algorithm to build a predictive

model and compare it with the Multi-Layer Perceptron model and Random Forest model. The aim

of this analysis is to assess whether TabNet is better at predicting employee attrition than the Multi-

Layer Perceptron model and Random Forest model or not. Additionally, the writer employed

several preprocessing steps to enhance the performance of the predictive model.

Problem Formulation

This research aims to answer the following critical questions :

1. Does the TabNet model exhibit superior predictive performance compared to the Multi-Layer

Perceptron model and Random Forest model?

2. How does the TabNet model perform in terms of various metrics (such as accuracy, precision,

recall, and F1-score) when predicting employee attrition?

Scope

This research uses the "Employee Analysis | Attrition Report" dataset sourced from

Kaggle.com to predict employee attrition. The evaluation metrics will include accuracy, precision,

recall, and F1 score. Preprocessing steps involve data cleaning, encoding of categorical features

using one-hot encoder, rescaling using MinMax Scaling, and balancing the dataset using SMOTE.

The models developed are TabNet, Multi-Layer Perceptron, and Random Forest, implemented

with PyTorch and Scikit-learn, respectively. GridSearchCV will be used to perform

hyperparameter tuning with cross-validation for model validation.

Objective

The objective of this research is to evaluate the test score including accuracy, precision,

recall, and F1 score of the TabNet model. These results will then be compared with those of the

Multi-Layer Perceptron (MLP) and Random Forest (RF) models, based on each model’s best

performance on the test set across these metrics.

LITERATURE STUDY

In 2022, Raza et al. [7] implemented a research study to find the causes of employee attrition

and a learning framework to predict it. The research used IBM HR Employee Attrition dataset and

the authors compared the predictive capability of four machine learning techniques. They have

applied Employee Exploratory Data Analysis (EEDA) to identify major causes behind employee

attrition as well. While the study is insightful about the preprocessing techniques, it still does not

emerge with detailed information of how these key factors might affect attrition of employees.

While not forming the foundation of my research, this study will complement my research by

offering supplementary information on preprocessing steps.

Faced with a similar challenge, Jain et al. [6] also attempted constructing a model for

predicting employee attrition. They believed that measuring employee appraisal and satisfaction

within the company helps to reduce attrition rate. They did their research for predicting the

employee attrition using Support Vector Machine, Decision Tree and Random Forest by using the

120

human resource management dataset. However, their study did not perform data balancing. This

flaw produced classifier bias as their classifier tends to detect the majority class causing their

classifier to have low sensitivity to the minority class. Therefore, this research provides a good

example to show why data balancing is so crucial.

Another research on employee attrition was also done by Arqawi et al. [1]. In this study, they

used a deep learning model along with the other machine learning models in their research. By

using the IBM HR Employee Attrition dataset, they found that Random Forest model

outperformed other machine learning models. Random Forest is an ensemble learning method

designed for classification and regression tasks. It works by combining multiple decision trees to

produce accurate and stable prediction. For regression tasks, the output is the mean of the

predictions, while for classification tasks, the result is determined by the majority vote of the trees

[9]. However, after comparing the Random Forest model with the deep learning model, the deep

learning model produced superior performance compared to Random Forest. This research serves

as an additional information to develop my own Random Forest and Multi-Layer Perceptron

models for the purpose of comparison with the proposed TabNet model.

Another study employing the same IBM HR Employee Attrition dataset was proposed by

Alsubaie and Aldoukhi [10] who also aimed to assist organizations in minimizing attrition and

manage human resources by developing precise predictive models. While sharing similar research

objectives, they employed different methodologies compared to previous studies. They improved

their models’ accuracy by using pruning method for the Decision Tree model, the cross-validation

method for the Random Forest model and the stepwise method for Binary Linear Regression. They

concluded that Binary Linear Regression achieved the highest accuracy after these enhancements.

However, I pointed out that there was a weakness to their analysis that involved using accuracy as

the sole performance measure. The basic evaluation metrics like accuracy could be complemented

with other methods, for instance, precision, recall, and F1-score that would give a better insight

into the model performance. Nevertheless, the studies presented provide useful additional

information regarding the important variables that impact employee turnover.

In the research conducted by Darraji et al. [2], they also employed deep learning technique

to predict employee attrition. In this research they used two versions of the dataset which are,

original IBM HR Employee Attrition dataset and the balanced version of it. Their proposed nine

layers of deep learning model, achieved impressive accuracies of 91.16% and 94.16% for the

unbalanced and balanced dataset, respectively, surpassing the state-of-the-art techniques using the

same dataset. However, as informative as their reasoning may have been, they fell short on

providing comprehensive explanation of the main causes of attrition. Some of their work, although

not directly proposed as relevant to my research, offers valuable additional sources of information.

Previous studies have used only the classification algorithms in their research work while

Usha and Balaji [4] took a different approach by using KMeans alongside traditional classification

algorithms. This shift from the typical practice is quite fascinating since clustering algorithms are

normally not applied in this fashion. Based on their results, they discovered that Naïve Bayes was

121

more effective than other algorithms while on the other hand KMeans could not benchmark well

compared to other classification algorithms’ benchmarks in terms of performances. One limitation

of this research is that it could be enhanced by finding the key factors contributing to employee

attrition. This research led me to a conclusion that clustering algorithms might not be the best fit

for tasks like predicting employee attrition.

Another study was also carried out to predict top employees with high retention risk numbers

by Qutub et al. [9]. The authors further boosted the model accuracy by using ensemble methods,

which were not covered in the previous studies. Using the IBM Attrition Dataset, the authors

created just three ensemble models. Surprisingly, the results indicated that Logistic Regression

outperformed other algorithms regarding performance. Though they used ensemble methods, the

ensemble model's accuracy was relatively good. This, according to the authors, is due to the small

size of the dataset that favors the Logistic Regression. Still, in larger unseen datasets, the ensemble

methods may be more suitable. The remaining dissatisfaction is that the study examines only some

limited combination of models. Also, it does not explain in detail how the selection was done for

the features; that is, it does not indicate which attributes were in subsets d2-d5. Despite these

shortcomings, the study still provides valuable supplementary information for my research.

Fallucchi et al. [8] set out to determine through their research how objective factors influence

employee attrition. They were more interested in predicting the maximum number of potential

departures by minimizing the number of false negatives. Emphasizing recall in this case, the

Gaussian Naïve Bayes classifier was determined best after validation of the models and thus

fulfilling the study objective. On the attrition-related features, despite offering a detailed analysis

of the study, it remains inconsistent in most places. For instance, even while mentioning five

essential features, it will only state four in the conclusion. Second, another inconsistency is directed

toward the false positive rate mentioned in the discussion part and later referring to the false

negative. Despite these inconsistencies, it still provides vital inputs into the detailed explanation

of the features.

The following research completed by Mansor et al. [11] compared the predictive

performance of Decision Tree (DT), Support Vector Machine (SVM), and Artificial Neural

Network (ANN). To boost the level of accuracy in the models further, the authors have used several

preprocessing techniques, tuning of parameters, and regularization techniques. It was only at the

initial stages that the ANN model outperformed others in terms of accuracy, Root Mean Square

Error (RMSE), and Receiver Operating Characteristic (ROC). The specific type of ANN used in

their study was the Multi-Layer Perceptron (MLP), a non-linear predictive model designed to learn

the relationship between input data (X) and target outputs (Y). During training, the MLP adjusts

its parameters to make its predictions as close as possible to the actual target values. However,

after parameter tuning, the authors found that the Support Vector Machine model outperformed

the Artificial Neural Network. This highlights the critical role of parameter tuning in improving

the model's predictive performance significantly.

122

Alsheref et al. [5] conducted another study using a different dataset but applied an ensemble

method. In contrast to previous studies, this study applied the majority voting ensemble method,

which selects the final prediction based on most of the predicted class by all base models.

Conclusively, the authors found that there is no model that is perfect for each business cases. The

weakness identified is that the lack of discussion regarding the implementation of the majority

voting ensemble method.

With this background known from the previous studies, this research will focus on

constructing a TabNet model, a deep learning architecture specifically designed for tabular data,

to predict employee attrition. TabNet was created by Arik and Pfister [12] to address the limitations

of traditional Deep Neural Networks (DNNs) with tabular data. Unlike other DNNs, TabNet uses

a sequential attention mechanism to select the most important features at each step, leading to

interpretability and more efficient learning. This feature selection is instance-wise, meaning it

focuses on the most relevant features for each individual employee, and unlike some other

methods, it uses a single deep learning architecture for both feature selection and reasoning.

Arik and Pfister [12] also mention that TabNet supports two types of training: supervised

training and unsupervised pre-training. This study employs only supervised training, as the dataset

used is not considered heavily unlabelled. Unsupervised pre-training, typically situational, is used

when a significant portion of the dataset lacks labels. Its purpose is to enhance the model's

performance during subsequent supervised training by training the model to learn the relationships

between columns. This is achieved by having the model predict the value of a masked column

based on the remaining data.

RESEARCH METHODOLOGY

Research Methodology Overview

In this section, an overview of the methodology used in this research to achieve the stated

objectives is highlighted. The study process can be summed up in the flowchart in Gambar 1. The

process starts with getting the appropriate dataset. Next, the data goes through a long preprocessing

steps to get it ready for analysis. Once the data is good enough to train on, models are built and

tested over and over again. If the model's performance isn't good enough, changes are made to the

model settings, and the process starts over. This repeated process makes sure that a strong and

accurate model is made.

123

Gambar 1. Flowchart of Research Methodology

Dataset Collection

This study employed a dataset that was sourced from Kaggle specifically: "Employee

Analysis | Attrition Report". The dataset contains 35 features from 1470 employees. The key

variable of interest is “Attrition”, which either has the value “yes” meaning an employee leaves

the company or “no” meaning they end up retained. This dataset contains 18 numeric features and

17 categorical features.

Dataset Preprocessing

Preprocessing plays a crucial role in enhancing the performance of machine learning models.

This study focused on employing several preprocessing steps, which included, cleaning, rescaling,

categorical data encoding, dataset splitting into various ratios (80-20, 70-30, and 60-40), and

dataset balancing. The entire sequence of preprocessing processes is illustrated in Gambar 2 below.

https://www.kaggle.com/datasets/whenamancodes/hr-employee-attrition
https://www.kaggle.com/datasets/whenamancodes/hr-employee-attrition

124

Gambar 2. Flowchart of Dataset Preprocessing

Dataset Cleaning

In the initial analysis of the dataset, it was observed that certain features such as

EmployeeCount, Over18, and StandardHours, had identical values across all employees. Other

than that, previous research [11] found that EmployeeNumber was not useful for the modeling and

prediction process. As a result, these features were removed from the dataset. Further examination

revealed that the dataset contained no null values, thus no rows were eliminated.

Data Rescaling

Machine learning models tend to perform better when dealing with small value feature rather

than larger ones [1]. To solve this issue, feature rescaling technique was used. In this study, Min-

Max scaling was used to rescale feature values within the range of 0 to 1 using the equation below.

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1)

In function (1) above, 𝑥′ is the normalized value, 𝑥 is the original value, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are

the maximum and minimum value of the feature respectively.

125

Categorical Features Encoding

Categorical features cannot be directly used for model training. They need to be converted

into a numerical form. In this study, one-hot encoder was employed to solve this problem as was

done in previous research [1]. As for the target feature, Attrition, the value of yes and no were

converted into 1 and 0 respectively.

Hosni [13] explained, that the one-hot encoding process begins by determining the amount

of distinct categories within the categorical attribute. Then, a series of columns is made, each

column representing a different category. Next, depending on whether a data point is included in

a specific category or not, binary values (0 or 1) are assigned to these columns. The number of

columns generated corresponds to the number of distinct categories in the attribute.

Dataset Splitting

The performance of the models in this research were assessed comprehensively throughout

this study through applying and comparing the results of splitting the dataset with varying ratios

from 60/40 to 80/20. This approach involved dividing the dataset into two, training set and testing

set.

Balancing the Dataset

In situations when class imbalance is present in the dataset such that one class is larger than

the other, appropriate balancing techniques may be employed in order to improve the performance

of model. After conducting further investigation on the data used in this project, it was discovered

that there are 237 employees quit their job while the remaining 1233 employees did not, which

clearly shows the case of class imbalance. To counter such problem, Synthetic Minority

Oversampling Technique (SMOTE) was used to adjust the distribution of the proportion of classes

in the training dataset. Based on previous work [11], 200% oversampling degree with five nearest

neighbors was applied. The implementation of SMOTE in this study used the Scikit-learn library.

Description of Attributes and Preprocessing Actions

This section provides the description of attributes in the dataset and the specific

preprocessing actions applied. The complete description of the dataset’s attributes and their

preprocessing action is shown in Tabel 1below.

Tabel 1. Description of Attributes and Preprocessing Actions

No Attribute Name Type of

Data

Data Description Preprocessi

ng Action

1 Age Numerical Employee’s age Min = 18,
Max = 60

rescaled

2 Attrition Categorical Employee decisions to leave the
company or not (Yes, No)

No = 0, Yes
= 1

3 Business Travel Categorical Business Travel frequency (No
Travel, Travel Rarely, Travel

Frequently)

Applied
one-hot

encoding

126

4 Daily Rate Numerical Daily Salary Min = 102,
Max = 1499

rescaled

5 Department Categorical Employee Working Department
(HR, R&D, Sales)

Applied
one-hot

encoding

6 DistanceFromHome Numerical The distance from home to

office

Min = 1,

Max = 29
rescaled

7 Education Categorical Employee’s education level Retained

8 EducationField Categorical Employee’s field of study Applied

one-hot
encoding

9 EmployeeCount Numerical Employee individual count Cardinality

= 1,
removed

10 EmployeeNumber Numerical Employee ID Cardinality
= 1470,

removed

11 EnvironmentSatisfaction Categorical Employee satisfaction with the
environment

Retained

12 Gender Categorical Employee’s gender Applied

one-hot
encoding

13 HourlyRate Numerical Hourly salary Min = 30,

Max = 100
rescaled

14 JobInvolvement Categorical The level of involvement
required for the employee's job

Retained

15 JobLevel Categorical The job level of the employee Retained

16 JobRole Categorical The role of the employee in the
organization

Applied
one-hot

encoding

17 JobSatisfaction Categorical Employee's satisfaction with

their job

Retained

18 MaritalStatus Categorical Employee’s marital status Applied
one-hot

encoding

19 MonthlyIncome Numerical Employee’s monthly income Min = 1009,
Max =

19999
rescaled

20 MonthlyRate Numerical Monthly rate of pay for the
employee

Min = 2094,
Max =

26999
rescaled

127

21 NumCompaniesWorked Numerical Number of companies the
employee has worked for

Min = 0,
Max = 9
rescaled

22 Over18 Categorical Whether or not the employee is
over 18

Cardinality
= 1

removed

23 OverTime Categorical Whether or not the employee

works overtime

Applied

one-hot
encoding

24 PercentSalaryHike Numerical The percentage of salary hike

for the employee

Min = 11,

Max = 25
rescaled

25 PerformanceRating Categorical The performance rating of the

employee

Retained

26 RelationshipSatisfaction Categorical The employee's satisfaction with
their relationships

Retained

27 StandardHours Numerical The standard hours of work for
the employee

Cardinality
= 1,

removed

28 StockOptionLevel Numerical The stock option level of the
employee

Retained

29 TotalWorkingYears Numerical The total number of years the

employee has worked

Min = 0,

Max = 40
rescaled

30 TrainingTimesLastYear Numerical The number of times the

employee was taken for training
in the last year

Retained

31 WorkLifeBalance Categorical The employee's perception of
their work-life balance

Retained

32 YearsAtCompany Numerical The number of years the
employee has been with the

company

Min = 0,
Max = 40
rescaled

33 YearsInCurrentRole Numerical The number of years the

employee has been in their
current role

Min = 0,

Max = 18
rescaled

34 YearsSinceLastPromotion Numerical The number of years since the

employee's last promotion

Min = 0,

Max = 15
rescaled

35 YearsWithCurrManager Numerical The number of years the

employee has been with their
current manager

Min = 0,

Max = 17
rescaled

Model Building

The TabNet model was constructed utilizing the Pytorch library. The Multi-Layer Perceptron

(MLP) and Random Forest (RF) models were built using Scikit-learn library. The models’

performance was optimized via hyperparameter tuning using Grid Search algorithm. All models

128

were trained on the same feature set and the same split ratio of test and train data, and all of them

were validated by stratified 5-fold cross validation on the training set. This technique partitions

the training data into five segments equally, while maintaining the proportion of each class in every

fold. Four parts are used for training and one portion for validation. By averaging the results on

these folds, the author could get a fair estimate of the model generalization ability for each split

ratio.

Hyperparameter Tuning

Hyperparameter tuning is one of the important steps in order to improve the performance of

machine learning models [14]. In this research, the author carried out the procedure of tuning the

model’s hyperparameters through the application of grid search. Grid search is a hyperparameter

optimization technique that systematically traverses all parameter combinations in a specified

search space. All parametric possibilities are checked and the model is trained and evaluated for

each of the combinations. By using this technique, the author can identify the combination which

gives the best results in terms of accuracy.

TabNet Supervised Learning

This research did not employ unsupervised pre-training, as the dataset used did not fall into

the category of heavily unlabeled data. Therefore, only supervised training was implemented.

TabNet’s supervised learning utilizes the TabNet encoder as its main component. To better

understand how TabNet functions, the architecture of the encoder is illustrated in Gambar 3 below.

Gambar 3. TabNet Encoder Architecture (adapted from Arik and Pfister [12])

129

In the supervised learning process, the dataset's features first pass through a Batch

Normalization (BN) layer, where the data is normalized to accelerate and stabilize the training

process. This normalization ensures that the mean of the data approaches zero and the standard

deviation approaches one. Once normalized, the data is split and flows into two components: the

feature transformer and the decision step. Within the feature transformer, the model learns the

relationships among features, producing an output that will be divided into two parts: one becomes

the output for that decision step, while the other serves as input for the attentive transformer in the

subsequent step. Since the first feature transformer is not associated with any decision step, it only

produces an output that will be utilized by the attentive transformer in the first decision step.

The information passed from the previous decision step is used as the primary input for the

attentive transformer to produce a masking layer. The data first passes through a Fully Connected

(FC) layer and a BN layer, where the model begins to identify which features are most relevant at

the current step. After that, the data is modulated by its prior scale to ensure that the selected

features differ across steps. The results are then processed through a sparsemax function, which

generates a masking layer to filter the input for the decision step. The input from the initial BN

layer passes through the masking layer ensuring sparse feature selection. This allows only a subset

of features to be processed at each step, enhancing the model's efficiency without entirely

discarding less relevant features. Instead, the influence of less relevant features is reduced.

The selected features are then sent back to the feature transformer, where the model

continues learning feature relationships and generates outputs for the current decision step and

inputs for the next. After all decision steps are completed, the outputs from each step are combined

and passed through an FC layer to produce the final prediction. Additionally, the masking

generated at each decision step is combined to form a global feature importance metric, which

highlights the most influential features in the overall prediction process.

Model Evaluation and Comparison

In this section, the author evaluates and compares the performance of the TabNet model with

the Multi-Layer Perceptron (MLP) and Random Forest (RF) models. To assess each model’s

performance, several evaluation metrics were used, including accuracy, precision, recall, and F1

score.

Each model was tuned and cross-validated on three data splits (60-40, 70-30, and 80-20),

with the objective of identifying the best-performing configuration for each model based on cross

validated training performance. For each model, the configuration with the highest average cross

validation accuracy across folds within each split was initially selected. This configuration was

then evaluated on the test set, and the test results determined the final model performance.

Finally, the test set results for the highest-performing configurations of TabNet, Multi-Layer

Perceptron, and Random Forest were compared across all metrics to determine overall model

performance.

130

IMPLEMENTATION AND RESULTS

Experiment Setup

This research was conducted using Python version 3 in Google Colab, with a disk usage of

36.5 GB. To build the TabNet model, the author used the PyTorch library, while the Multi- Layer

Perceptron (MLP) and Random Forest (RF) models were built using the Scikit-learn library.

Implementation

This section describes the tools and libraries used to predict employee attrition using Tabnet

and compares its performance to Random Forest and Multi-Layer Perceptron. The initial step of

the implementation is to download and upload the "Employee Analysis | Attrition Report" dataset

from Kaggle to Google Colab. Following that, we can install the libraries required for this research,

including imbalanced-learn, torch, and pytorch-tabnet.

In this research, several important libraries were imported for data preprocessing, model

training, and model evaluation. Pandas was used to handle and manipulate DataFrames. Scikitlearn

was mostly used in this research, it provided tools for calculating metrics (f1_score,

precision_score, recall_score, accuracy_score, make_scorer), as well as for preprocessing data

with encoders (OneHotEncoder, LabelEncoder). Moreover, it was also used for splitting dataset

(train_test_split) and perform grid search (GridSearchCV and StratifiedKFold).

RandomForestClassifier and MLPClassifier were also imported from Scikit-learn for model

training. The scaling in this study implemented Min-Max scaling to rescale the feature values.

Additionally, the TabNetClassifier was imported from the PyTorch library for training the

TabNet model. To handle imbalanced datasets, SMOTE from the imbalanced -learn library was

used for oversampling the minority class.

Dataset Cleaning

After uploading the dataset to google colab, the dataset needs to be cleaned from unused

features as shown in the code below.

The function above cleans the "Employee Analysis | Attrition Report" dataset by dropping

irrelevant features ('EmployeeCount', 'StandardHours', 'Over18', and 'EmployeeNumber') that add

unnecessary complexity to the model. To clean the dataset, we can call the function and input the

original DataFrame as an argument, which then returns a cleaned DataFrame stored in df variable

for further use.

131

Feature Rescaling

After cleaning the dataset, the next step is feature rescaling by using the Min-Max scaling

technique as shown in the code below.

The function above rescales the numerical features of the "Employee Analysis | Attrition

Report" dataset. Before apply rescaling, relevant numerical columns are listed in the

columns_to_rescale variable. To rescale these features, call scale_features(df,

columns_to_rescale) with the cleaned DataFrame and column list as arguments. The function

returns a rescaled DataFrame, stored in df for further use.

Categorical Features Encoding

After rescaling the dataset, the next step is categorical features encoding by using the

OneHotEncoder and LabelEncoder function from Scikit-learn library as shown in the code below.

The above function one-hot encodes the specified categorical columns. This function uses

Scikit-learn's OneHotEncoder to transform the listed categorical columns, producing a DataFrame

with encoded values and appending it to the original DataFrame after dropping the original

categorical columns.

132

The above function label-encodes the target feature, 'Attrition,' using Scikit-learn's

LabelEncoder. This method converts categorical values into binary form (e.g., 'Yes' as 1 and 'No'

as 0).

Before apply the feature encoding, relevant categorical features are listed in the

categorical_columns. To encode the categorical features, call the encode_features(df,

categorical_columns) function with the rescaled DataFrame and column list as arguments. The

function returns an encoded DataFrame, stored in df. After that, to transform the ‘Attrition’ feature

values into 1 and 0, call the label_encode_target(df, ‘Attrition’) function with the encoded

DataFrame and column name as arguments. The function then return a labeled DataFrame, stored

in df for further use.

Dataset Balancing

After encoding the categorical features of the dataset, the next step is to balance the dataset.

Before balancing, we first split the dataset into training and testing sets. Dataset balancing is then

applied only to the training set. In this research, three different split ratios are tested, each using a

unique sampling_strategy for the respective split, as shown in the code below.

In the 80-20 split, the sampling_strategy is set to 0.608, meaning that the minority class is

resampled to 60.8% of the majority class size. For the 70-30 split, a sampling_strategy of 0.619

increases the minority class to 61.9% of the majority class. In the 60-40 split, the sampling_strategy

is set to 0.645, bringing the minority class to 64.5% of the majority class.

133

Results

In this study, the author tested three different train-test split ratios for three different

algorithms: Random Forest, Multi-Layer Perceptron, and TabNet. To find the best

hyperparameters for each split ratio, the models were trained and tuned utilizing GridSearchCV

and stratified 5-fold cross-validation. The best parameter combination for each model was chosen

using the model's average accuracy. The model with the best average accuracy from the tuning

process was then used on the testing set to assess it’s performance.

Results for Data Balancing

In this section, the data balancing was done using SMOTE with 200% oversampling degree,

referenced from Mansor et al.’s research [11]. The table below shows the division of majority and

minority classes of the training data before and after SMOTE was applied.

Tabel 2. Resampled Training Data Results of 80-20 Split

 Number of Instances Minority Class

(Attrition Yes)

Majority Class

(Attrition No)

Before 1176 198 (16.8%) 978 (83.2%)

After 1572 594 (37.8%) 978 (62.2%)

Tabel 3. Resampled Training Data Results of 70-30 Split

 Number of Instances Minority Class

(Attrition Yes)

Majority Class

(Attrition No)

Before 1029 176 (17.1%) 853 (82.9%)

After 1381 528 (38.2%) 853 (61.8%)

Tabel 4. Resampled Training Data Results of 60-40 Split

 Number of Instances Minority Class

(Attrition Yes)

Majority Class

(Attrition No)

Before 882 156 (17.7%) 726 (82.3%)

After 1194 468 (39.2%) 726 (60.8%)

From Tabel 2, Tabel 3, and Tabel 4, the results reveal that SMOTE only preserves the

number of the majority class while increasing the data in the minority class by 200%. This

controlled rise helps prevent possible overfitting with too much synthetic data by lessening the

imbalance without totally equalising the classes. This method maintains the original majority class

size while moderately increasing the minority class, achieving a balance between enhanced

minority class representation and the preservation of natural class proportions.

Results for Random Forest

The Random Forest model was trained using three different train-test split ratios. In each

scenario, the model underwent the same hyperparameter tuning process using GridSearchCV with

stratified 5-fold cross-validation. The model was initialized with class_weight='balanced' and a

fixed random_state=42 to handle imbalanced data and ensure consistent results across runs. In this

research there are a total of five hyperparameters tested, including n_estimator, max_feature,

134

min_samples_split, max_dept, and max_leaf_nodes. Below is an explanation of each

hyperparameter.

1. n_estimator : This hyperparameter represents the number of trees in the forest. Higher values

generally improve performance by reducing variance, but they also increase the computational

cost. The values tested in this research are 50, 100, and 150.

2. max_features : This parameter controls the number of features considered for splitting at each

node. The values tested in this research are None, sqrt, and log2.

3. min_samples_split : This parameter sets the minimum number of samples required to split

an internal node. Lower values allow the model to split nodes more frequently, potentially

leading to overfitting, while higher values help to control complexity. The values tested in this

research are 2, 3, and 5.

4. max_depth : This parameter controls the maximum depth of each tree in the forest. Limiting

depth prevents overfitting by reducing model complexity. The values tested in this research

are None, 3, 6, and 9.

5. max_leaf_nodes : This parameter defines the maximum number of leaf nodes in a tree.

Limiting the number of leaf nodes helps control model complexity, similar to max_depth. The

values tested in this research are None, 3, 6, and 9.

From the explanation above, there are 432 unique hyperparameter combinations were

evaluated during grid search. For each combination, the model was trained and validated using

stratified 5-fold cross-validation. Thus, the total number of model fits performed during the grid

search was 2160 fits.

Tabel 5. Best Hyperparameter Combination for Random Forest

n_estimators max_feature min_samples_split max_depth max_leaf_nodes Avg

Acc

80% - 20%

100 log2 2 None None 0. 911

70% - 30%

150 log2 3 None None 0.907

60% - 40%

150 log2 3 None None 0.906

After evaluating 432 unique hyperparameter combinations using GridSearchCV for Random

Forest, the best combination for each split was identified based on the highest average accuracy

from 5-fold cross-validation. As shown in Tabel 5, the best hyperparameter settings for the 80-20,

70-30, and 60-40 splits are substantially identical. However, the 80-20 split differs significantly:

the optimal n_estimators are 100, whereas the other splits are 150. Furthermore, min_samples_split

is set to 2 for the 80-20 split, as opposed to 3 for the other splits.

135

Tabel 6. Cross-Validation Results for the Best Random Forest Model

Cross

Validation

(CV)

Accuracy F1 Precision Recall Training

Time

80% - 20%

CV1 0.905 0.903 0.908 0.905 0.3s

CV2 0.949 0.949 0.949 0.949 0.3s

CV3 0.901 0.899 0.905 0.901 0.3s

CV4 0.898 0.897 0.898 0.898 0.3s

CV5 0.904 0.902 0.909 0.904 0.3s

70% - 30%

CV1 0.906 0.905 0.907 0.906 0.4s

CV2 0. 902 0.901 0.904 0.902 0.4s

CV3 0. 899 0. 896 0.904 0.899 0.4s

CV4 0.928 0.927 0.928 0.928 0.4s

CV5 0.902 0.901 0.905 0.902 0.4s

60% - 40%

CV1 0.921 0.919 0.924 0.921 0.4s

CV2 0.908 0.907 0.908 0.908 0.4s

CV3 0.908 0.906 0.912 0.908 0.4s

CV4 0.887 0.885 0.891 0.887 0.4s

CV5 0.908 0.906 0.910 0.908 0.4s

Tabel 6 displays the cross-validation outcomes utilizing the optimal hyperparameters for

each train-test division. Cross-validation prevents overfitting and ensures performance across

training data subsets.

The model's cross-validation performance for the 80-20 split ranges from 0.898 to 0.949,

averaging 0.911, meaning that 91% of predictions over all folds are correct. F1 scores range from

0.897 to 0.949, averaging 0.91. Precision is 0.898 to 0.949, averaging 0.914, while recall is 0.898

to 0.949, averaging 0.911. The model's computational efficiency is shown by its steady 0.3 seconds

per fold training time.

The model performs consistently but somewhat lower in the 70-30 split, average 0.907 with

accuracy between 0.899 to 0.928, suggesting 90% accuracy. The average F1 score is 0.906,

ranging from 0.896 to 0.927. Precision ranges from 0.904 to 0.928, averaging 0.901, and recall

from 0.899 to 0.928, averaging 0.907. Compared to the 80-20 split, training takes 0.4 seconds per

fold longer.

Compared to the 70-30 split, the 60-40 split model has slightly poorer accuracy, ranging

from 0.887 to 0.921 and averaging 0.906. The F1 score is slightly more consistent, averaging 0.905

from 0.885 to 0.919. Precision is 0.891 to 0.924, averaging 0.901, while recall is 0.887 to 0.921,

averaging 0.906. Training time remains 0.4 seconds each fold, as in the preceding split.

136

Tabel 7. Test Result for the Best Random Forest Model

Split Accuracy F1 Precision Recall

80% - 20% 0.881 0.856 0.860 0.881

70% - 30% 0.878 0.849 0.858 0.878

60% - 40% 0.881 0.853 0.865 0.881

The Random Forest model performed consistently across all splits with accuracy between

0.878 and 0.881, demonstrating high generalization to unknown data. Precision and recall remain

steady, scoring between 0.858 - 0.865 and 0.878 - 0.881, demonstrating the model's accurate true

positive categorization and effective false positive control. The F1 score is constant, ranging from

0.849 to 0.856, with the greatest score in the 80-20 split, indicating a strong precision-recall

balance. These data show robust performance across splits, with the 80-20 split slightly better.

Results for Multi-Layer Perceptron

The Multi-Layer Perceptron model was also implemented with the same procedures as

previous model with early_stopping was set to True and max_iter to 500 directly within the model

initialization to control convergence and prevent overfitting. The model was also initialized with

a fixed random_state=42 to ensure consistent results across runs.

In this research there are a total of four hyperparameters tested, including

hidden_layer_sizes, activation, solver, and learning_rate. Below is an explanation of each

hyperparameter.

1. hidden_layer_sizes : This parameter specifies the number of neurons and hidden layers of the

Multi-Layer Perceptron. Each hidden layer helps the network learn patterns in the data, and

more neurons generally increase the model's capacity to learn complex relationships. The

values tested in this research are (100), (100,100), (100,100,100), and (100,100,100,100).

2. activation : The activation function transforms the weighted sum of inputs into the output of

a neuron. It introduces non-linearity, allowing the network to learn complex relationships in

the data. The values tested in this research are tanh, relu, identity, and logistic.

3. solver : The solver is the optimization algorithm used to update the weights during the training

process. It controls how the model minimizes the loss function (a measure of the difference

between the model’s predictions and the actual values) and adjusts the weights accordingly.

The values tested in this research are sgd, adam, and lbfgs.

4. learning_rate : The learning rate determines how much to adjust the model's weights with

respect to the gradient of the loss function during each update step. A larger learning rate

means the model updates weights more aggressively, while a smaller learning rate updates

weights more cautiously. The values tested in this research are constant, adaptive, and

invscaling.

From the explanation above, there are 144 unique hyperparameter combinations were

evaluated during grid search. For each combination, the model was trained and validated using 5-

fold cross-validation. Thus, the total number of model fits performed during the grid search was

720 fits.

137

Tabel 8. Best Hyperparameter Combination for Multi-Layer Perceptron

hidden_layer_sizes activation solver learning_rate Avg Acc

80% - 20%

(100) relu lbfgs constant 0.875

70% - 30%

(100, 100, 100) relu adam constant 0.871

60% - 40%

(100, 100, 100) relu lbfgs constant 0.877

After evaluating 144 unique hyperparameter combinations using GridSearchCV for Multi-

Layer Perceptron, the best combination for each split was identified based on the highest average

accuracy from 5-fold cross-validation.

Tabel 8 shows that the best hyperparameter configurations for the 80-20, 70-30, and 60-40

splits are similar, especially for activation function (relu) and learning rate (constant). But they

differ in hidden_layer_sizes and solver. The 70-30 and 60-40 splits worked best with three hidden

layers, but the 80-20 split worked best with one hidden layer. Meanwhile, the 80-20 and 60-40

splits worked best with lbfgs solver while the 70-30 worked best with adam solver.

Tabel 9. Cross-Validation Results for the Best Multi-Layer Perceptron Model

Cross

Validation

(CV)

Accuracy F1 Precision Recall Training

Time

80% - 20%

CV1 0.902 0.902 0.903 0.902 2.0s

CV2 0.905 0.905 0.906 0.905 2.0s

CV3 0.847 0.848 0.851 0.847 1.0s

CV4 0.882 0.883 0.887 0.882 0.9s

CV5 0.841 0.843 0.850 0.841 1.0s

70% - 30%

CV1 0.874 0.874 0.876 0.874 0.9s

CV2 0. 855 0.854 0.854 0.855 1.1s

CV3 0. 855 0. 855 0.856 0.855 1.6s

CV4 0.877 0.877 0.877 0.877 1.2s

CV5 0.895 0.894 0.895 0.895 0.9s

60% - 40%

CV1 0.841 0.843 0.854 0.841 9.5s

CV2 0.879 0.879 0.883 0.879 5.6s

CV3 0.883 0.884 0.889 0.883 11.0s

CV4 0.895 0.895 0.895 0.895 8.9s

CV5 0.887 0.886 0.886 0.887 7.5s

For the 80-20 split, the model displayed accuracy ranging from 0.841 to 0.905, with an

average of 0.875. The F1 score varied from 0.843 to 0.905, with an average of 0.876. Precision

averaged 0.879, with values spanning from 0.850 to 0.906, while recall averaging 0.875 and

138

ranging between 0.841 and 0.905. Training times across folds varied from 0.9 to 2.0 seconds, with

an average of 1.38 seconds.

For the 70-30 split, the model demonstrated stable performance, achieving accuracy scores

ranging from 0.855 to 0.895, with an average accuracy of 0.871. The F1 score, ranging from 0.854

to 0.894 and averaging 0.871, highlights balanced performance between precision and recall.

Precision values ranged from 0.854 to 0.895, with an average of 0.872, while recall scores were

spanning from 0.855 to 0.895, with an average of 0.871. Training times across folds varied from

0.9 to 1.6 seconds, averaging 1.14 seconds, showing moderate variability in training duration.

In the 60-40 split, the model exhibited stable performance with accuracy ranged from 0.841

to a peak of 0.895 averaging 0.877. The F1 score spanning from 0.843 to 0.895 averaging 0.878.

Precision scores spanned from a high of 0.889 to 0.854 averaging 0.881, while recall values

ranging from 0.841 to 0.895 averaging 0.877. Training times took way longer than the previous

two splits averaging 8.5 seconds, with a maximum of 11.0 seconds and a minimum of 5.6 seconds

in.

Tabel 10. Test Result for the Best Multi-Layer Perceptron Model

Split Accuracy F1 Precision Recall

80% - 20% 0.813 0.825 0.842 0.813

70% - 30% 0.857 0.850 0.845 0.857

60% - 40% 0.833 0.837 0.842 0.833

The Multi-Layer Perceptron model exhibits consistent performance across the splits, with

accuracy values ranging from 0.813 to 0.857, indicating reliable generalization to new data.

Precision demonstrates stability, with values ranging from 0.842 to 0.845. Meanwhile, recall

showed minor fluctuations across splits with values ranging from 0.813 to 0.857. This indicates

the model's consistent ability to identify positives but fluctuating ability to manage false positives.

The F1 score exhibits minor fluctuations as well across splits, ranging from 0.825 to 0.850, with

the peak value recorded in the 70-30 split, indicating a robust balance between precision and recall.

The results indicate strong performance across all splits, with the 70-30 split achieving slightly

higher overall metrics.

Results for TabNet

Similar to the two previous models, the TabNet model was also implemented using the same

procedures. The model was initialized with optimizer_params=dict(lr=5e-3) to set the learning rate

to 0.005, providing a slower and more controlled learning process compared to the default rate.

In this research there are a total of four hyperparameters tested, including n_d, n_a, n_steps,

and mask_type. Below is an explanation of each hyperparameter.

1. n_d : This parameter controls the dimensionality of the feature transformer’s output in each

decision step of the TabNet model. Higher values mean more capacity for learning complex

representations, while lower values limit the model's complexity. The values tested in this

research are 8, 16, and 32.

139

2. n_a : This parameter controls the dimensionality of the feature transformer’s output to be sent

to the attentive transformer in the next decision step. The attention layer decides which

features to highlight or suppress as the model processes the data. The values tested in this

research are 8, 16, and 32.

3. n_steps : This parameter specifies the number of decision steps, or sequential passes, that the

model performs over the data. Each step is a chance for the model to refine its decision by

focusing on different features using the attention mechanism. More steps allow for deeper

feature processing and increased decision refinement. The values tested in this research are 3,

5, and 10.

4. mask_type : The mask_type parameter controls how the model selects features at each

decision step, influencing which features get more focus. The values tested in this research

are entmax and sparsemax.

From the explanation above, there are 54 unique hyperparameter combinations were

evaluated during grid search. For each combination, the model was trained and validated using 5-

fold cross-validation. Thus, the total number of model fits performed during the grid search was

270 fits.

Tabel 11. Best Hyperparameter Combination for TabNet

n_d n_a n_steps mask_type Avg Acc

80% - 20%

16 32 3 entmax 0.852

70% - 30%

16 32 3 entmax 0.856

60% - 40%

16 32 5 sparsemax 0.614

After evaluating 54 unique hyperparameter combinations using GridSearchCV for TabNet,

the best combination for each split was identified based on the highest average accuracy from 5-

fold cross-validation.

From Tabel 11, the optimal hyperparameter configurations across the 80-20, 70-30, and 60-

40 splits are mostly similar, particularly in n_d (16) and n_a (32). However, the 60-40 split differ

in the n_steps and mask_type parameter. using n_steps set to 5 and mask_type set to sparsemax

rather than entmax.

Tabel 12. Cross-Validation Results for the Best TabNet Model

Cross

Validation

(CV)

Accuracy F1 Precision Recall Training

Time

80% - 20%

CV1 0.867 0. 867 0. 867 0. 867 22.1s

CV2 0.857 0.858 0.859 0.857 21.8s

CV3 0.844 0.844 0.845 0.844 21.1s

CV4 0.838 0.839 0.842 0.838 21.8s

140

CV5 0.854 0.853 0.853 0.854 21.8s

70% - 30%

CV1 0.848 0. 848 0. 848 0. 848 24.8s

CV2 0. 873 0. 873 0. 873 0. 873 24.1s

CV3 0. 848 0. 848 0. 848 0. 848 23.9s

CV4 0.833 0.835 0.838 0.833 24.3s

CV5 0.880 0.881 0.881 0.880 24.4s

60% - 40%

CV1 0.615 0.480 0.635 0.615 0.3s

CV2 0.619 0.493 0.688 0.619 0.3s

CV3 0.607 0.479 0.566 0.607 0.3s

CV4 0.603 0.477 0.537 0.603 0.3s

CV5 0.626 0.517 0.653 0.626 0.3s

For the 80-20 split, the model achieves relatively consistent performance, with accuracy

ranging from 0.838 to 0.867 and averaging 0.852. The F1 score varies from 0.839 to 0.867, with

an average of 0.852, indicating that the model maintains a moderate balance between precision

and recall. Precision averages at 0.853, with values ranging from 0.842 to 0.867, while recall

averages at 0.852, with scores ranging from 0.838 to 0.867. Training times across folds remain

stable, spanning from 21.1 to 22.1 seconds and averaging around 21.72 seconds.

In the 70-30 split, the model demonstrates a slight improvement in performance, with

accuracy ranging from 0.833 to 0.880 and an average accuracy of 0.856. The F1 scores vary from

0.835 to 0.881, with an average score of 0.857, indicating better overall classification compared to

the 80-20 split. Precision averages at 0.858, with values from 0.838 to 0.881, while recall averages

at 0.856, with values ranging from 0.833 to 0.880. The training time for this split is slightly longer,

averaging around 24.3 seconds per fold and spanning from 23.9 to 24.8 seconds.

For the 60-40 split, the model’s performance drops significantly in this split, with accuracy

values ranging from 0.603 to 0.626 and averaging at 0.614. Meanwhile, F1 score is between 0.477

and 0.517, averaging at 0.489. This suggests that the model struggles to generalize in this

configuration. Precision ranges between 0.537 and 0.688, averaging 0.616, while recall values vary

from as low as 0.603 to 0.626, with an average of 0.614. This indicates that the model can identify

positives at times but largely fails to capture true positives consistently. Training time remains at

0.3 seconds per fold.

Tabel 13. Test Result for the Best TabNet Model

Split Accuracy F1 Precision Recall

80% - 20% 0.827 0.826 0.825 0.827

70% - 30% 0.798 0.796 0.794 0.798

60% - 40% 0.776 0.790 0.809 0.776

Tabel 13 shows varying performance of the TabNet model across the splits, with accuracy

ranging from 0.776 to 0.827, indicating that it generalizes reasonably well but slightly less

consistently than other models. Precision and recall fluctuate, scoring between 0.794 and 0.825 for

precision and 0.776 and 0.827 for recall, suggesting that the model’s true positive classification

141

and false positive control are generally reliable but vary more with different splits. The F1 score

is relatively stable, ranging from 0.790 to 0.826, with the highest score in the 80-20 split, indicating

a balanced precision-recall trade-off in this configuration. Overall, these results highlight moderate

robustness across splits, with the 80-20 split yielding the best overall performance.

Discussion

Tabel 14. Comparison of Model’s Best Test Result

Model Split Accuracy F1 Score Precision Recall

Random Forest 80-20 0.881 0.856 0.860 0.881

Multi-Layer Perceptron 70-30 0.857 0.850 0.845 0.857

TabNet 80-20 0.827 0.826 0.825 0.827

Based from Tabel 14, the Random Forest model demonstrated strong performance with an

accuracy of 88.1%, precision of 86%, recall of 88.1%, and an F1 score of 85.6% on the 80-20 split,

marking it as the highest-performing model among the three. In comparison, the Multi-Layer

Perceptron (MLP) model achieved its best performance on the 70-30 split, with 85.7% accuracy,

84.5% precision, 85,7% recall, and an F1 score of 85%, which, while solid, is still slightly lower

than Random Forest. Lastly, the best TabNet model, tested on the 80-20 split, attained an accuracy

of 82.7%, precision of 82.5%, and both recall and F1 scored closely at 82.7% and 82.6%

respectively.

These results reveal that, while each model performed well, Random Forest offered the most

robust results across all metrics. This finding aligns with research by Grinsztajn et al. [15] in 2022,

which highlights why tree-based models often outperform neural network approaches in tabular

data tasks. According to their work, tree-based models like Random Forest are particularly

effective at capturing the complex, irregular patterns that often appear in structured data. While

neural network models such as Multi-Layer Perceptron and TabNet are generally designed to find

smooth and generalized patterns, tree-based models divide the data into discrete segments,

allowing them to pick up on local irregularities that deep learning models might miss.

Additionally, Grinsztajn et al. [15] emphasize that tree-based models are highly resilient to

uninformative or irrelevant features, which can often introduce noise and reduce performance in

neural networks. In our dataset, not all features equally contribute to predicting employee attrition.

Tree-based models naturally deprioritize these less relevant features during the splitting process,

focusing instead on the features with the strongest predictive power. Neural networks, by contrast,

can be more sensitive to unimportant features if they are not carefully tuned or regularized.

Grinsztajn et al. [15] also noted another advantage of tree-based models such as Random

Forest lie in how they respect the distinct meaning and structure of each feature. Each feature in

tabular data has a unique context (for example, "Age" representing years or "MonthlyIncome"

representing salary), which is essential for effective interpretation and accurate predictions. Unlike

neural network models, which are rotationally invariant, they treat all features as equally

important, making it challenging to distinguish between informative and uninformative features.

This can lead to reduced performance when irrelevant features dominate the dataset.

142

The dataset size may also have played a role in Random Forest's success in this study. Deep

learning models like Multi-Layer Perceptron and TabNet often require large datasets to fully

leverage their pattern-recognition capabilities. With a limited dataset, they may struggle to

generalize effectively, whereas simpler models like Random Forest perform robustly even on

smaller data. Interestingly, despite being specifically designed for tabular data, TabNet performed

lower than Multi-Layer Perceptron. This may be due to the tuning process, as TabNet is a complex

model with many hyperparameters that can be sensitive to tuning. If not well-tuned, it might not

perform to its full potential. Multi-Layer Perceptron, on the other hand, has a simpler architecture,

which may make it easier to tune and produce consistent results with smaller datasets.

Thus, while Random Forest achieved the best results here, larger datasets and careful

hyperparameter tuning could potentially allow TabNet model to match or even surpass Random

Forest’s performance in future studies.

CONCLUSION

Based on the results above, it can be concluded that the TabNet model is suitable for

predicting employee attrition. While it demonstrates good overall performance, it does not

outperform the Multi-Layer Perceptron (MLP) or Random Forest (RF) models in this study.

Among the three models tested on the test set, Random Forest demonstrated the highest predictive

performance. For the TabNet model, the model performs the best on the 80-20 split with a

consistent result. The model achieves an accuracy of 82.7%, F1 score of 82.6%, precision of

82.5%, and recall at 82.7%.

While TabNet shows competitive performance with these metrics, deep learning models like

TabNet and Multi-Layer Perceptron generally require longer training times compared to Random

Forest due to their higher model complexity and tuning requirements. The relatively small dataset

size in this study may also have limited TabNet’s ability to fully utilize its deep learning

architecture, which could partially explain its comparatively lower performance relative to

Random Forest.

Suggestions for future research include exploring a larger dataset than the one used in this

study, as deep learning models like TabNet may achieve better performance with increased data

size. If future researchers choose to use the same dataset, increasing the oversampling percentage

is recommended to address class imbalance more effectively. Additionally, cond ucting more

extensive hyperparameter tuning is suggested to further enhance TabNet's performance. Exploring

a wider range of hyperparameters and configurations could help the model better adapt to the

dataset, potentially addressing its lower performance compared to other models.

143

DAFTAR PUSTAKA

[1] S. Arqawi et al., “Predicting Employee Attrition and Performance Using Deep Learning,”
Journal of Theoretical and Applied Information Technology, vol. 100, no. 21, 2022,
[Online]. Available: http://www.jatit.org/volumes/Vol100No21/21Vol100No21.pdf

[2] S. Al-Darraji, D. G. Honi, F. Fallucchi, A. I. Abdulsada, R. Giuliano, and H. A. Abdulmalik,
“Employee Attrition Prediction Using Deep Neural Networks,” Computers, vol. 10, no. 11,

Art. no. 11, Nov. 2021, doi: 10.3390/computers10110141.
[3] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Apr. 14,

2021, arXiv: arXiv:2104.05314. doi: 10.48550/arXiv.2104.05314.

[4] P. M. Usha and N. V. Balaji, “A comparative study on machine learning algorithms for
employee attrition prediction,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 1085, no. 1, p. 012029,

Feb. 2021, doi: 10.1088/1757-899X/1085/1/012029.
[5] F. K. Alsheref, I. E. Fattoh, and W. M. Ead, “Automated Prediction of Employee Attrition

Using Ensemble Model Based on Machine Learning Algorithms,” Computational

Intelligence and Neuroscience, vol. 2022, Jun. 2022, doi: 10.1155/2022/7728668.
[6] P. K. Jain, M. Jain, and R. Pamula, “Explaining and predicting employees’ attrition: a

machine learning approach,” SN Appl. Sci., vol. 2, no. 4, p. 757, Mar. 2020, doi:
10.1007/s42452-020-2519-4.

[7] A. Raza, K. Munir, M. Almutairi, F. Younas, and M. M. S. Fareed, “Predicting Employee

Attrition Using Machine Learning Approaches,” Applied Sciences, vol. 12, no. 13, Art. no.
13, Jan. 2022, doi: 10.3390/app12136424.

[8] F. Fallucchi, M. Coladangelo, R. Giuliano, and E. William De Luca, “Predicting Employee
Attrition Using Machine Learning Techniques,” Computers, vol. 9, no. 4, Art. no. 4, Dec.
2020, doi: 10.3390/computers9040086.

[9] A. Qutub, A. Al-Mehmadi, M. Al-Hssan, R. Aljohani, and H. S. Alghamdi, “Prediction of
Employee Attrition Using Machine Learning and Ensemble Methods,” IJMLC, vol. 11, no.

2, pp. 110–114, Mar. 2021, doi: 10.18178/ijmlc.2021.11.2.1022.
[10] F. Alsubaie and M. Aldoukhi, “Using machine learning algorithms with improved accuracy

to analyze and predict employee attrition,” Decision Science Letters, vol. 13, no. 1, pp. 1–

18, 2024, doi: 10.5267/j.dsl.2023.12.006.
[11] N. Mansor, N. S. Sani, and M. Aliff, “Machine Learning for Predicting Employee Attrition,”

International Journal of Advanced Computer Science and Applications (IJACSA), vol. 12,
no. 11, Art. no. 11, Jan. 2021, doi: 10.14569/IJACSA.2021.0121149.

[12] S. O. Arik and T. Pfister, “TabNet: Attentive Interpretable Tabular Learning,” arXiv.org,

Aug. 2019, doi: 10.48550/arXiv.1908.07442.
[13] M. Hosni, “Encoding Techniques for Handling Categorical Data in Machine Learning-Based

Software Development Effort Estimation,” presented at the International Joint Conference
on Knowledge Discovery, Knowledge Engineering and Knowledge Management,
SCITEPRESS, Nov. 2023, pp. 460–467. doi: 10.5220/0012259400003598.

[14] M. R. Hossain and D. D. Timmer, “Machine Learning Model Optimization with Hyper
Parameter Tuning Approach,” Global Journal of Computer Science and Technology, vol.

21, no. D2, pp. 7–13, Sep. 2021.
[15] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based models still outperform

deep learning on tabular data?,” Jul. 18, 2022, arXiv: arXiv:2207.08815. doi:

10.48550/arXiv.2207.08815.

