
65

CLASSIFICATION OF MATERNAL HEALTH RISKS USING

BOOSTING TECHNIQUE

1Caleb Adithia Kurniawan, 2Rosita Herawati"
1,2Program Studi Teknik Informatika Fakultas Ilmu Komputer, Universitas

Katolik Soegijapranata
121k10021@student.unika.ac.id, 2rosita@unika.ac.id

ABSTRACT (ABSTRACT TITLE)

Maternal health is an important concern as it directly impacts the ongoing survival and well-

being of future generations. In many developing nations, maternal mortality has become a serious
problem despite the advances in medical science. Recognizing potential risks in pregnancies is
essential for the well-being of the mother and the newborn. In various clinical applications,

including disease diagnosis, treatment planning, and patient monitoring, AI models are capable
of showing promising results. Depending on the chance of complications during pregnancy, it can

be categorized into three risk levels: low, and moderate. The risk is classified based on age,
systolic and diastolic blood pressure, blood sugar, body temperature, and heart rate. This paper
aims to apply several boosting techniques: Boosted Random Forest, XGboost, and Catboost to

classify the maternal health risk. By classifying the maternal risk, it should help minimize the
occurrence of maternal death which will lead to the continuation of humanity.

Keywords: classification, boosting, machine learning

INTRODUCTION

Maternal health plays a critical role as it directly impacts the ongoing survival and well-

being of future generations. In many developing nations, maternal mortality has become a serious

problem despite the advances in medical science [1], [2] .In 2020, almost 800 pregnant women

died from preventable causes every day, and 95% of maternal deaths occurred in low and lower-

middle-income countries [3]. Maternal mortality is defined as the death of a woman due to

complications during pregnancy or within 42 days after giving birth, regardless of the location or

stage of pregnancy [2]. These issues are usually made worse by the handling of pregnancy rather

than accidents [2].

Recognizing potential risks in pregnancies is essential for the well-being of the mother and

the newborn. However, this task can be challenging due to the fact that the factors involved are

very complex and varied. Depending on the chance of complications during pregnancy, it can be

categorized into three risk levels: low, moderate, and high [4]. Nowadays, artificial intelligence

(AI) has become a method to improve medical science that simplifies analyzing and interpreting

complex medical data. In various clinical applications, including disease diagnosis, treatment

planning, and patient monitoring, AI models are capable of showing promising results [5].

Ensemble learning methods are one of the machine learning methods that is often used for medical

diagnosis purposes [6]. A study in 2023 by Togunwa et al. compared 16 algorithms to classify the

risk level of pregnancy. Random Forest Classifier has the highest accuracy when compared to

mailto:121k10021@student.unika.ac.id

66

other single algorithms. Furthermore, a hybrid model from the ANN (artificial neural network)

and the RF (random forest) classifier shows the highest accuracy at 94.9% compared to the rest of

the 15 algorithms [5].

A study in 2023 by Banujan et al. used a boosting ensemble method for COVID-19 death

prediction with models of XGBoost, CatBoost, and LightBGM that attained an accuracy of 98%,

AdaBoost attained 96%, and ANN achieved 93%. It indicates that boosting techniques can be more

accurate than ANN [7]. So I suggest using an ensemble method using a boosting technique.

LITERATURE STUDY

Togunwa et al. [5] conducted a research study about maternal health risk classification in

pregnancy using machine learning. The dataset used in this research was obtained from the Kaggle

website which consists of maternal health care. It was used to find whether a hybrid model of

machine learning and deep learning can classify maternal health risks and have the highest

accuracy after comparing it with other models. This research focuses on the potential of AI to

classify maternal health risks. This research is useful to my research as we use the same topic and

dataset. The gap in this article is that the authors didn’t compare the models with models of a

machine learning algorithm with a boosting algorithm; thus, the hybrid method had the highest

results in precision, recall, F1 score, and accuracy. This research will be used as the basis of my

research for the methodology.

In research conducted by Iwendi et al. [8] about the health prediction of COVID-19 patients.

The dataset was also used from the Kaggle website, which compiled it from various sources to

make AI models for predicting patient health. This research focuses on making a quick and

efficient prediction of a patient using AI techniques. This article is useful as it proposes the same

method as my research, which is to use a boosted random forest model to predict a medical

condition. The gap in this research is that the authors didn’t compare which boosting algorithm

has higher accuracy in a boosted random forest model. This research indicates that the boosted

random forest algorithm has the capability to provide accurate predictions even when dealing with

imbalanced datasets. This research is proof that using a boosted random forest in the medical field

is possible.

With the same concept of algorithm, Mishina et al. [9] compare a boosted random forest and

a random forest only. This research used five data sets, Pendigits, Letter, Satellite, Spam Base, and

Iris, from the UCI Machine Learning Repository to train and evaluate these two models. It

compares the computational cost and memory usage between the two models. The main limitation

of this research is that they didn’t give information about what boosting algorithm they used in the

research. The results of this research show that random forests require a total memory of 47% more

than boosted random forests. This research was only used for additional informational purposes.

Another research conducted by Banujan et al. [7] is also about the health prediction of

COVID-19 patients. The dataset was obtained from the Kaggle website, which contains blood

samples from 4313 COVID-19 patients, to identify the most effective prediction model. This

67

research focuses on finding an effective model by comparing boosting ensemble algorithms and

artificial neural networks. This research is useful to my study as it has information about boosting

algorithms that can do better than ANN. The limitation of this study is that this model might not

be able to predict with another institute dataset or have a lower level of accuracy. This research

results in accuracy indicate that an ensemble technique of boosting has a higher accuracy than

using ANN. This research will be used as supplementary information for my research in choosing

which boosting algorithm will be used.

Furthermore, research by Sanjaya et al. [10] on predicting bad credit problems in a bank.

This research uses data from one of the banks in Indonesia to predict bank loan defaults. This

research focuses on comparing deep neural networks, random forests, and boosted random forests

that consist of adaptive boosting and random forests. This research is useful to my research as not

every dataset that is used to make a boosted random forest model can give a better result than a

random forest alone. The gap in this research is that there are still some boosting algorithms that

can be used to compare. This research indicates that with this dataset, deep neural networks have

the highest accuracy compared to the rest of the model. This research will be useful as an

information source on boosted random forests.

Abuelezz et al. [11] review the contribution of AI to pregnancy. The authors use a total of

1,753 articles or studies from Google Scholar and PubMed on the use of AI in pregnancy to identify

which type of AI is commonly used in the pregnancy field. This review aims to explore features

of technologies such as AI for pregnant women. The article is useful to my research topic as it

gives information about the use of AI in the pregnancy field. The limitation of this review is that

they don’t find studies that discuss the effectiveness of models for treating disorders and predicting

and diagnosing pregnancies. This review suggests that AI technologies have the potential to

improve the healthcare services of pregnant patients. This review is proof that AI can help improve

healthcare for treating pregnant patients.

Fauzi et al. [12] conducted research with a boosted random forest for predicting a DDoS

attack. It uses a dataset called CICDDoS_2019 to find a solution to predict a DDoS attack. It

focuses on comparing random forest and boosted random forest that consists of random forest and

ADA boost to detect a DDoS attack. This research is useful as it gives an idea of how to make a

model of a random forest with a boosting algorithm. The gap in this research is that it only uses

one type of boosting algorithm, and has an accuracy of 99% for both models that can lead to

overfitting. This research can be used for the method of making boosted random forests.

Another research by Srivardhan [13] also uses a boosted random forest that consists of ADA

boost and random forest to interpret well logs and determine reservoir properties. There are 5 wells

that were used for the dataset. This research is useful to learn how to implement a boosted random

forest. The gap in this research is that it only uses one type of boosting algorithm. This research

result indicates that when the random forest is combined with adaptive boosting, it improves the

performance. The random forest model seems to have overfitted, with the training and testing

accuracy of 98.21% and 77.62%. The boosted random forest shows a better test accuracy of

68

97.03% and a training accuracy of 99.40%. This research is proof that using adaptive boosting can

improve the random forest's accuracy. So the research method for making a boosted random forest

model can be used for my research.

A survey by Mienye and Sun [6] regarding the concept and application of the ensemble

method. For machine learning researchers who want to comprehend ensemble learning and the

widely used ensemble algorithms, this paper will be an essential reading. The three primary types

of ensemble methods that are covered in this work are stacking, boosting, and bagging. This survey

found that ensemble learning algorithms have been widely used in a variety of classification and

regression tasks across a wide range of disciplines, including medical diagnosis, fraud detection,

sentiment analysis, and anomaly detection, because of their robust learning capabilities.

A review and analysis by Ahmed et al. [14] about the risk factors of maternal health using

the Internet of Things. This research uses machine learning algorithms to discover the risk level in

pregnancy. This research is useful as the dataset that will be used in our research. It explains the

correlation between the parameters that will be used to predict the risk in the dataset with the help

of a medical expert. It uses a logistic model tree to classify and predict the risk level. It resulted in

a 90% accuracy of prediction. This research will help to make sure that the risk in the dataset is

based on medical expert opinion.

The research conducted by Togunwa et al. [5] didn’t use a boosted random forest, CatBoost

algorithm, and XGBoost algorithm. So this research will be conducted with the same preprocessing

method as the research conducted by Togunwa et al. [5] to find the precision, recall, F1 score, and

accuracy, but using a different set of algorithms. Boosted random forest models that use a

combination of random forest classifier and AdaBoost algorithm, CatBoost algorithm, and

XGBoost algorithm. Then, it will be compared to see which algorithm has the highest accuracy.

RESEARCH METHODOLOGY

Methodology Flowchart

This flowchart consists of the research implementation steps. The implementation of this

research will start by collecting the dataset from the Kaggle.com website. Then the dataset will be

visualized to see the statistics of the dataset and providing guidance for the preprocessing steps.

Gambar 1. Methodology Flowchart

69

Then we preprocess the dataset based on the information that we found at the dataset

visualization. The next step is training and testing the model to get the classification results. Then

all models will be compared to create a conclusion of this research.

Dataset Collection

The dataset was taken from the Kaggle.com site with the title of Maternal Health Risk Data.

The University of California (UCI) machine learning repository provided the maternal health risk

dataset used in this investigation. Using an Internet of Things risk monitoring system, the data was

first gathered from several hospitals, community clinics, and maternal health care centers located

in Bangladesh's rural districts [5]. The dataset uses a CSV format file that consists of 1,014

instances in the dataset that are divided into three categories based on the risk class. 406 instances

in the low-risk class, 336 instances in the mid-risk class, and 272 instances in the high-risk class.

The dataset consists of age, systolic and diastolic blood pressure, blood sugar, body temperature,

heart rate, and risk level. The dataset can be found via the link

https://www.kaggle.com/datasets/csafrit2/maternal-health-risk-data.

Dataset Visualization

Data visualization will help researchers to know what needs to be done when doing the

dataset pre-processing. First, the data distribution of data targets or the risk level of maternal health

risk will be visualized to check whether the data is balanced or not. Second, the data training

statistic summary will be visualized to check mean, standard deviation, minimum, and maximum

value. The summary is useful for understanding data distribution and detecting outliers.

Data Pre-Processing

This preprocessing uses the same way from Togunwa et al. research [5]. It will be done with

3 steps, namely :

1. Check if there are any missing values from the dataset. Missing data can introduce bias in

model training, decreasing accuracy and making the model less reliable.

2. Encode the target categorical variables into numerical variables to facilitate computation.

Low-risk, mid-risk, and high-risk classes were coded as 0, 1, and 2. Encoding helps the model

to differentiate classes in a structured manner and make more accurate predictions.

3. Check if there are any outliers. Then re-imputed the outliers with the mode value. Outliers are

extreme values that can interfere with model training because they can affect the distribution

of the data and cause the model to learn unusual patterns or noise. By identifying and dealing

with outliers, we can reduce the negative impact of unusual data. Replacing outliers with mode

values helps maintain the integrity of the original data and ensures that unusual values do not

distort model results.

https://www.kaggle.com/datasets/csafrit2/maternal-health-risk-data

70

Dataset Splitting

The dataset will be split into data training and data testing. Respectively, the splitting will

be 60%-40%, 70-30%, and 80%-20%. Furthermore, to avoid overfitting, this research will use 10-

fold cross validation. 10-fold cross validation means the training dataset is divided into 10 equal

parts so it provides a more accurate and stable estimate than single train-test splits by balancing

both bias and variance.

Model Architecture

 After the preprocessing is done, the next step is to build/train the model of boosted random

forest that uses a combination of random forest classifier with Ada boost algorithm and boosting

model that uses Cat Boost and XG Boost. After the training is done, we will test the model for

overfitting assessment.

Random forest is one of the ensemble algorithms. It uses the bagging technique to build

multiple decision trees using bootstrapped samples. It solves the overfitting problem that often

happens in decision trees. The steps of the random forest classifier can be seen in Gambar 2.

Gambar 2. Random Forest Classfier

Random Forest creates multiple subsets of the training data through bootstrap sampling. It

means that, by sampling with a replacement, it creates several random subsets of the data, each

size N, from the original dataset with N samples. Some samples may appear multiple times in the

same subset or not appear at all. For each bootstrap sample, a decision tree is built. To add variety

and randomization, random forests use two main methods. The first one is bootstrap sampling.

71

Each tree in the forest is trained on a different bootstrap sample, which is a subset of the training

data generated by sampling with replacement. This means that each bootstrap sample will have

some repeated samples and may leave out others, adding diversity to the trees. The second one is

random feature selection. For Each node in the tree, only a random subset of features is considered

for splitting. This feature prevents the trees from relying too heavily on the most predictive features

and further promotes variation among the trees in the forest.

The first boosting algorithm that will be used is AdaBoost because this method has been

used by Iwendi et al. [8] in their research on boosted random forest for the health prediction of

COVID-19 patients. Adaptive Boost can be used to obtain a robust classifier using weak learners.

The first step in this algorithm is typically using the basic classification algorithm. Then adjust the

sample weight according to the base classification result, which makes the classified sample more

noticeable. Subsequently, the custom sample is used to train the next base learner. After iteration,

weighing is added to the base learner to form the final classification. It can be seen in Gambar 3

from Sanjaya et al. research [10].

Gambar 3. Ada Boost Classifier

To combine random forest classifier and adaptive boosting, we will use Random Forest as a

base learner for AdaBoost, which means each decision tree model in Random Forest is considered

a “weak learner” by AdaBoost. We use AdaBoost to combine multiple Random Forest models into

one more powerful model. AdaBoost sequentially strengthens model performance by adjusting the

weights for each data sample based on previous model performance, making it possible to focus

attention on samples that are difficult to predict.

The second boosting algorithm is XGBoost. It is an implementation of gradient boosting.

The model is built by combining several decision trees as the base model with weak learners to

72

produce a stronger prediction. Every new decision tree model is built based on the gradient and

hessian of the previous tree. XGBoost loss function contains a regularization term Ω(ℎ𝑚) from

function (3) where γ represents the complexity parameter, T represents the number of leaves in

the tree, λ is a penalty parameter, and 𝜔 denotes the output of the leaf nodes. It prevents

overfitting that optimizes the objective function which 𝐹(𝑥𝑖) represents the prediction on the 𝑖 −

𝑡ℎ instance at the 𝑀 − 𝑡ℎ iteration. 𝐿 represents a loss function that computes the differences

between the predicted class and the actual class of the target variable that is represented in function

(1).

𝐿𝑀(𝐹(𝑥𝑖)) = ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝑛

𝑖=1

+ + ∑ Ω(ℎ𝑚)

𝑀

𝑚=1

(1)

Ω(h) = γT +
1

2
 λ‖𝜔‖2 (2)

While gradient boosting uses the first derivative of Taylor approximation, XGBoost uses the

second derivative that can be seen in function (3). The final loss value is determined by summing

the loss values of all leaf nodes, assuming that 𝐼𝑗 represents the samples in leaf node 𝑗.

𝐿 𝑀 = [(∑ 𝑔𝑖

𝑖∈𝐼𝑗

) 𝜔𝑗 +
1

2
(∑ ℎ𝑖 +

𝑖∈𝐼𝑗

λ) 𝜔𝑗
2] + γT

(3)

𝑔𝑖 =
∂l(𝑦𝑖 ,𝐹(𝑥𝑖))

∂𝑦𝑖

 (4)

ℎ𝑖 =
∂2𝐿(𝑦𝑖 ,𝐹(𝑥𝑖))

∂𝑦𝑖
2 (5)

The third one is CatBoost because in a reseach by Banujan et al. [7] it have the highest

accuracy for the health prediction of COVID-19 patients after comparing it with other boosting

algorithm. CatBoost algorithm is an implementation of gradient boosting. It use the same training

process as XGBoost as both is an implementation of gradient boosting. CatBoost excludes a

number of samples that will not be used to train the current model and estimate the gradient of

each sample at every boosting iteration. So it can lowers overfitting by unbiased gradient

estimations. During the training stage, the algorithm manages categorical features well. Using a

random permutation of the training set, the algorithm determines the average label value for each

sample in the permutation that has the same category value as the sample that is provided [6]. If

𝜎 = (𝜎1,… , 𝜎𝑛) is the permutation, then 𝑥𝜎𝑝 ,𝑘 is replaced with function (6) where P is a prior

value, and a is the weight of the prior value. Meanwhile, the parameter 𝑎 > 0.. By adding the prior

value and the prior weight, it reduce the noise of low-frequency categories.

73

∑ [𝑥𝜎𝑝 ,𝑘 = 𝑥𝜎𝑗 ,𝑘] 𝑌𝜎𝑗
+ 𝑎. 𝑝𝑝−1

𝑗=1

∑ [𝑥𝜎𝑝 ,𝑘 = 𝑥𝜎𝑗 ,𝑘] 𝑌𝜎𝑝
+ 𝑎𝑝−1

𝑗=1

(6)

Compare The Algorithms

After training the model, we need to test all of the models and compare it by the values of

precision, recall, F1 score, and accuracy to see which models have a higher result in classifying

maternal health risk. To calculate precision, recall, F1 score, and accuracy, we can see functions

(7), (8),(9),(10)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8)

𝐹1 𝑅𝑒𝑐𝑎𝑙𝑙 =
2(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 (9)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (10)

IMPLEMENTATION AND RESULTS

Experiment Setups

This research uses Google Collab with a disk of 107.7 GB and Python version 3.

Researchers used several libraries to help with the implementation. The Sklearn library was used

to help several things. First, creating models for Random Forest Classifier and AdaBoost

Classifier. Second, splitting the dataset into specific sizes. Third, calculating accuracy, precision,

recall, and F1 scores. Fourth, creating classification reports and confusion matrix. Fifth, to create

the K-Fold and cross validating the model. The Xgboost library is used to model XGBoost

Classifier. Then the Catboost library to model CatBoost Classifier. Fourth, Pandas library to read

data from CSV. Fifth, Seaborn and Matplotlib library to display the confusion matrix.

Implementation

This section will explain the implementation of classification of maternal health risk. It will

be done based on the Research Methodology. It will find a suitable splitting and parameters for

each method/model. Then the model will be trained and tested to make a conclusion. There will

be a process explanation of each part and the code that will be used.

74

Data Collection

The data collection will be done by importing a CSV file that has been downloaded from the

Kaggle website. The file is called “Maternal Health Risk Dataset.csv”. The downloaded file is

stored inside the researcher’s Google Drive folder. Every time the Python file runs for the first

time, Google Collab will ask permission to access the Google Drive.

1. from google.colab import drive
2. drive.mount('/content/drive')
3. import pandas as pd
4. data = pd.read_csv('/content/drive/My Drive/Maternal Health Risk Data

Set.csv')

The implementation starts by importing data from Google Drive then reading the csv file

using pandas. After that we save the readed csv file into the data variable. It can be seen at lines 1

& 2 is used to connect the colab to researcher personal google drive. Then at line 3 is used to install

the pandas library to read the dataset from the drive.

Data Visualization

The data will be visualized into a chart and a report. It will visualize the data distribution and

the statistics of the dataset. So it will help what needs to be done for the pre-processing part.

5. import matplotlib.pyplot as plt
6.
7. risk_distribution = data['RiskLevel'].value_counts()
8. plt.figure(figsize=(8, 6))
9. risk_distribution.plot(kind='bar', color=['green', 'orange', 'red'])
10. plt.title('Distribution of Dataset Based on Risk Level')

11. plt.xlabel('Risk Level')

12. plt.ylabel('Number of Subjects')

13. plt.show()

14.

15. summary = data.drop(columns=['RiskLevel'])

16. summary_stats = summary.describe()

17. print(summary_stats)

The visualization can be seen in lines 7 until 17. The code will visualize the data distribution

of RiskLevel through the dataset. To visualize it into a bar chart, the Matplotlib library will be

used. Then a statistical summary will be visualized to check the mean, standard deviation,

minimum,and maximum value.

Data Pre-Processing

The preprocess will be done not only based on the data visualization. The preprocess will

check the missing values. Then it will encode the risk level into numerical.

18. missing_values = data.isnull().sum()

19. data['RiskLevel'] = data['RiskLevel'].map({'low risk': 0, 'mid risk': 1,

'high risk': 2})

20. heart_rate_mode = data['HeartRate'].mode()[0]

21. data.loc[data['HeartRate'] == 7, 'HeartRate'] = heart_rate_mode

75

Then the process of data processing is conducted by checking the missing values and

outliers. Then encoding the target category into numerical. The low-risk, mid-risk and high-risk

categories are encoded into 0, 1, and 2 respectively. This pre-processing is based on Togunwa et

al. [5] research. Line 18 is used to check the missing values from the dataset. Then we check the

heart rate outlier and change it with the mode of heart rate at lines 20 & 21.

Cross Validation Function Helper

Then the function helper for cross validation is created to help with the implementation.

cross validation will help the model to be trained by several folds of data. This research will use

10-fold cross validation.

22. from sklearn.model_selection import KFold, cross_validate

23. import numpy as np

24.

25. def evaluate_model(model, X, y):

26. scoring = {

27. 'accuracy': 'accuracy',

28. 'precision': 'precision_weighted',

29. 'recall': 'recall_weighted',

30. 'f1': 'f1_weighted'

31. }

32. cv = KFold(n_splits=10, shuffle=True, random_state=42)

33. scores = cross_validate(model, X, y, cv=cv, scoring=scoring,

return_train_score=False)

34. return {metric: np.mean(scores[f'test_{metric}']) for metric in

scoring}

The code above is used to cross validate the model by using 10-fold based on accuracy,

precision, recall, and F1 for the scoring. 10-fold means the training dataset is divided into 10 equal

parts. The model is trained on 9 folds and tested on the 1 remaining fold and then the results are

averaged using the numpy library. Lines 22 & 23 are importing K-Fold and cross_validate to help

with creating the K-Fold and cross validate it.

Finding Best Parameters Function Helper

Tabel 1. Model Parameters

Models Parameters

Boosted Random Forest Classifier

n_estimators_range = [25, 50, 75, 100]

learning_rate_range = [1, 0.5, 0.1]

max_depth_range = range(5, 11)

CatBoost Classifier

iterations_range = range(100, 1100, 100)

learning_rate_range = [1, 0.5, 0.1]

depth_range = range(5, 11)

XGBoost Classifier

n_estimators_range = range(100, 1100, 100)

learning_rate_range = [1, 0.5, 0.1]

max_depth_range = range(5, 11)

76

These several functions are used to help find the best parameters from each model. So each

model has their own function to search for the best parameters. Each model parameter is limited

to specific type and range based on Tabel 1

The first parameter is the learning rate. The learning rate controls the contribution of each

tree to the final model. A higher learning rate speeds up learning but might lead to overfitting,

while a smaller rate results in slower learning but more stable convergence. Then the second one,

max depth limits the depth of each decision tree, preventing trees from becoming overly complex.

A higher value allows the model to capture more intricate patterns, but it risks overfitting. Then

the third one, iteration and n_estimators, defines the number of decision trees. More trees generally

lead to better performance but increase computational cost.

This function has an X and y as the parameters of the function which will be used to receive

the data for training. By looping the model parameters that will be used to create the model, it will

create many combinations of parameters and then compare it one by one for the highest result.

Then the first function for searching the best parameters is adaboost_best_params. This function

is used to help to find the best parameters for Boosted Random Forest. In this research, Boosted

Random Forest is using AdaBoost Classifier but the base model is changed into Random Forest

Classifier.

35. from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier

36.

37. def adaboost_best_params(X, y):

38. best_score = {'accuracy': 0, 'f1': 0, 'recall': 0, 'precision': 0}

39. best_params = {}

40.

41. n_estimators_range = [25, 50, 75, 100]

42. learning_rate_range = [1, 0.5, 0.1]

43. max_depth_range = range(5, 11)

44.

45. for n_estimators in n_estimators_range:

46. for max_depth in max_depth_range:

47. for learning_rate in learning_rate_range:

48. base_model = RandomForestClassifier(max_depth=max_depth,

random_state=42)

49. model = AdaBoostClassifier(estimator=base_model,

n_estimators=n_estimators, learning_rate=learning_rate, random_state=42,

algorithm="SAMME")

50. scores = evaluate_model(model, X, y)

51.

52. print(f"Learning Rate: {learning_rate}, max_depth:

{max_depth}, "

53. f"n_estimators: {n_estimators}, Scores: {scores}")

54.

55. if all(scores[metric] > best_score[metric] for metric in

best_score):

56. best_score = scores

57. best_params = {

58. 'learning_rate': learning_rate,

59. 'max_depth': max_depth,

60. 'n_estimators': n_estimators

77

61. }

62. print(f"New Best Params: {best_params}, Best Scores:

{best_score}")

63.

64. return best_params, best_score

The model parameters can be seen in Lines 41-43 based on Table 4.1. The looping process

can be seen at lines 45 until 62. To get the results of each combination, the evaluate_model

functions will help to cross validate the model by 10-fold and return the mean results of the model

at line 50. If the current loop result is higher than the previous loop, then it will be stored in the

variable for the best score and best parameters that have been initiated at lines 38-39. After the

looping process is done, line 64 will return the best parameters and best score.

Then the second function for searching the best parameters is catboost_best_params. This

function is used to help to find the best parameters for CatBoost Classifier. The base model of

CatBoost will be Decision Tree Classifier.

65. !pip install catboost

66. from catboost import CatBoostClassifier

67.

68. def catboost_best_params(X, y):

69. best_score = {'accuracy': 0, 'f1': 0, 'recall': 0, 'precision': 0}

70. best_params = {}

71.

72. learning_rate_range = [1, 0.5, 0.1]

73. depth_range = range(5, 11)

74. iterations_range = range(100, 1100, 100)

75.

76. for iterations in iterations_range:

77. for learning_rate in learning_rate_range:

78. for depth in depth_range:

79. model = CatBoostClassifier(

80. learning_rate=learning_rate,

81. depth=depth,

82. iterations=iterations,

83. loss_function='MultiClass',

84. silent=True

85.)

86.

87. scores = evaluate_model(model, X, y)

88.

89. print(f"Learning Rate: {learning_rate}, Depth: {depth},

"

90. f"Iterations: {iterations}, Scores: {scores}")

91.

92. if all(scores[metric] > best_score[metric] for metric in

best_score):

93. best_score = scores

94. best_params = {

95. 'learning_rate': learning_rate,

96. 'depth': depth,

97. 'iterations': iterations

98. }

99. print(f"New Best Params: {best_params}, Best Scores:

{best_score}")

78

100.
101. return best_params, best_score

The model is created at line 79 which calls the CatBoost Classifier model with its parameter

and the model parameters can be seen in lines 72-74 based on Table 4.1. The looping process can

be seen at lines 76 until 99. To get the results of each combination, the evaluate_model functions

will help to cross validate the model by 10-fold and return the mean results of the model at line

87. If the current loop result is higher than the previous loop, then it will be stored in the variable

for the best score and best parameters that have been initiated at lines 69 & 70. After the looping

process is done, line 101 will return the best parameters and best score.

Then the third function for searching the best parameters is xgboost_best_params. This

function is used to help to find the best parameters for XGBoost Classifier. The base model of

XGBoost will be Decision Tree Classifier.

102. from xgboost import XGBClassifier
103.
104. def xgboost_best_params(X, y):
105. best_score = {'accuracy': 0, 'f1': 0, 'recall': 0, 'precision': 0}
106. best_params = {}
107.
108. learning_rate_range = [1, 0.5, 0.1]

109. n_estimators_range = range(100, 1100, 100)
110. max_depth_range = range(5, 11)
111.
112. for n_estimators in n_estimators_range:
113. for learning_rate in learning_rate_range:
114. for max_depth in max_depth_range:
115. model = XGBClassifier(learning_rate=learning_rate,

n_estimators=n_estimators, max_depth=max_depth, random_state=42,

objective='multi:softmax', num_class=3)

116. scores = evaluate_model(model, X, y)

117.
118. print(f"Learning Rate: {learning_rate}, max_depth:

{max_depth}, "

119. f"n_estimators: {n_estimators}, Scores: {scores}")
120.
121. if all(scores[metric] > best_score[metric] for metric in

best_score):

122. best_score = scores
123. best_params = {
124. 'learning_rate': learning_rate,

125. 'max_depth': max_depth,
126. 'n_estimators': n_estimators
127. }
128. print(f"New Best Params: {best_params}, Best Scores:

{best_score}")

129.
130. return best_params, best_score

The model is created at line 115 which calls the XGBoost Classifier model with its parameter

and the model parameters can be seen in lines 108-110 based on Table 4.1. The looping process

can be seen at lines 112 until 128. To get the results of each combination, the evaluate_model

79

functions will help to cross validate the model by 10-fold and return the mean results of the model

at line 116. If the current loop result is higher than the previous loop, then it will be stored in the

variable for the best score and best parameters that have been initiated at lines 105 & 106. After

the looping process is done, line 130 will return the best parameters and best score.

Model Evaluation Helper

This function is used to help evaluate the model with the best parameters that have been

found with the function above. The evaluation is based on the accuracy, precision, recall, and F1

score. It will use the Sklearn library to calculate the evaluation metrics.

131. from sklearn.metrics import accuracy_score, precision_score,

recall_score, f1_score, classification_report, confusion_matrix

132. import seaborn as sns

133. import matplotlib.pyplot as plt
134.
135. def evaluate_metrics(y_true, y_pred):
136. accuracy = accuracy_score(y_true, y_pred)
137. precision = precision_score(y_true, y_pred, average='macro')
138. recall = recall_score(y_true, y_pred, average='macro')
139. f1 = f1_score(y_true, y_pred, average='macro')
140.
141. print(f"Accuracy: {accuracy}")

142. print(f"Precision: {precision}")
143. print(f"Recall: {recall}")
144. print(f"F1 Score: {f1}")
145. print("")
146.
147. report = classification_report(y_true, y_pred)
148. print("Classification Report:")
149. print(report)
150. cm = confusion_matrix(y_true, y_pred)
151. plt.figure(figsize=(4, 3))

152. sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=True,
yticklabels=True)

153. plt.title('Confusion Matrix')
154. plt.xlabel('Predicted')
155. plt.ylabel('Actual')
156. plt.show()
157.
158. return {"accuracy": accuracy, "precision": precision, "recall":

recall, "f1": f1}

The model evaluation function helper can be seen at lines 135 until 158. After calculating

the metrics, it will display classification reports to help evaluate the performance of a classification

model. Then it will show the confusion matrix to visualize the model performance based on True

Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). After that, the

function will return the calculated accuracy, precision, recall, and F1 score.

80

Splitting 70:30 Experiment

This section is about finding the best parameters and score of each model using 70% data

training and 30% data testing. First, the dataset is splitted into 70% data training and 30% data

testing. X_train and y_train are used for training and X_test and y_test are used to test the model.

159. X = data.drop(columns=['RiskLevel'])
160. y = data['RiskLevel']
161. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=42)

162.
163. catboost_best, catboost_score = catboost_best_params(X_train, y_train)
164. print(f"CatBoost Best Params: {catboost_best}, Score: {catboost_score}")
165.
166. catboost_70_30 = CatBoostClassifier(learning_rate=1, depth=10,

iterations=400, loss_function='MultiClass', silent=True)

167. catboost_70_30.fit(X_train, y_train)
168.
169. y_pred_catboost = catboost_70_30.predict(X_test)
170. results['CatBoost_70_30'] = evaluate_metrics(y_test, y_pred_catboost)
171.
172. xgboost_best, xgboost_score = xgboost_best_params(X_train, y_train)
173. print(f"XGBoost Best Params: {xgboost_best}, Score: {xgboost_score}")
174.

175. xgboost_70_30 = XGBClassifier(learning_rate=0.1, max_depth=9,

n_estimators=400, objective='multi:softmax', num_class=3)

176. xgboost_70_30.fit(X_train, y_train)
177.
178. y_pred_xgboost = xgboost_70_30.predict(X_test)
179. results['XGBoost_70_30'] = evaluate_metrics(y_test, y_pred_xgboost)
180.
181. adaboost_best, adaboost_score = adaboost_best_params(X_train, y_train)
182. print(f"AdaBoost Best Params: {adaboost_best}, Score: {adaboost_score}")
183.

184. base_model = RandomForestClassifier(max_depth=5, random_state=42)
185. adaboost_70_30 = AdaBoostClassifier(learning_rate=0.1,

estimator=base_model, n_estimators=50, algorithm="SAMME")

186. adaboost_70_30.fit(X_train, y_train)
187.
188. y_pred_adaboost = adaboost_70_30.predict(X_test)
189. print("AdaBoost 70:30 Results:")
190. results['AdaBoost_70_30'] = evaluate_metrics(y_test, y_pred_adaboost)

The X_train and y_train variables are used to find the best parameters using

catboost_best_params function at line 163, xgboost_best_params function at line 172, and

adaboost_best_params function at line 181. Then after the best parameters are found, the

parameters are used to train the model with X_train and y_train variables and to the X_test

variable. After the result is out, we evaluate the classification for each model at line 170, 179, and

190 using the evaluate_metrics function by inputting the y_test which is the real value from the

dataset and the classificate value from model classification.

81

Splitting 80:20 Experiment

This section is about finding the best parameters and score of each model using 80% data

training and 20% data testing. First, the dataset is splitted into 80% data training and 20% data

testing. X_train and y_train are used for training and X_test and y_test are used to test the model.

191. X = data.drop(columns=['RiskLevel'])
192. y = data['RiskLevel']
193. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

194.
195. catboost_best, catboost_score = catboost_best_params(X_train, y_train)
196. print(f"CatBoost Best Params: {catboost_best}, Score: {catboost_score}")
197.
198. catboost_80_20 = CatBoostClassifier(learning_rate=1, depth=10,

iterations=400, loss_function='MultiClass', silent=True)

199. catboost_80_20.fit(X_train, y_train)
200.
201. y_pred_catboost = catboost_80_20.predict(X_test)
202. results['CatBoost_80_20'] = evaluate_metrics(y_test, y_pred_catboost)
203.
204. xgboost_best, xgboost_score = xgboost_best_params(X_train, y_train)
205. print(f"XGBoost Best Params: {xgboost_best}, Score: {xgboost_score}")
206.

207. xgboost_80_20 = XGBClassifier(learning_rate=0.1, max_depth=9,

n_estimators=400, objective='multi:softmax', num_class=3)

208. xgboost_80_20.fit(X_train, y_train)
209.
210. y_pred_xgboost = xgboost_80_20.predict(X_test)
211. results['XGBoost_80_20'] = evaluate_metrics(y_test, y_pred_xgboost)
212.
213. adaboost_best, adaboost_score = adaboost_best_params(X_train, y_train)
214. print(f"AdaBoost Best Params: {adaboost_best}, Score: {adaboost_score}")
215.

216. base_model = RandomForestClassifier(max_depth=5, random_state=42)
217. adaboost_80_20 = AdaBoostClassifier(learning_rate=0.1,

estimator=base_model, n_estimators=50, algorithm="SAMME")

218. adaboost_80_20.fit(X_train, y_train)
219. y_pred_adaboost = adaboost_80_20.predict(X_test)
220. print("AdaBoost 80:20 Results:")
221. results['AdaBoost_80_20'] = evaluate_metrics(y_test, y_pred_adaboost)

The X_train and y_train variables are used to find the best parameters using

catboost_best_params function at line 195, xgboost_best_params function at line 204, and

adaboost_best_params function at line 213. Then after the best parameters are found, the

parameters are used to train the model with X_train and y_train variables and to the X_test

variable. After the result is out, we evaluate the classification for each model at line 202, 211, and

221 using the evaluate_metrics function by inputting the y_test which is the real value from the

dataset and the classificate value from model classification.

82

Splitting 60:40 Experiment

This section is about finding the best parameters and score of each model using 60% data

training and 40% data testing. First, the dataset is splitted into 60% data training and 40% data

testing. X_train and y_train are used for training and X_test and y_test are used to test the model.

222. X = data.drop(columns=['RiskLevel'])
223. y = data['RiskLevel']
224. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,

random_state=42)

225.
226. catboost_best, catboost_score = catboost_best_params(X_train, y_train)
227. print(f"CatBoost Best Params: {catboost_best}, Score: {catboost_score}")
228.
229. catboost_60_40 = CatBoostClassifier(learning_rate=1, depth=10,

iterations=400, loss_function='MultiClass', silent=True)

230. catboost_60_40.fit(X_train, y_train)
231.
232. y_pred_catboost = catboost_60_40.predict(X_test)
233. results['CatBoost_60_40'] = evaluate_metrics(y_test, y_pred_catboost)
234.
235. xgboost_best, xgboost_score = xgboost_best_params(X_train, y_train)
236. print(f"XGBoost Best Params: {xgboost_best}, Score: {xgboost_score}")
237.

238. xgboost_60_40 = XGBClassifier(learning_rate=0.1, max_depth=9,

n_estimators=400, objective='multi:softmax', num_class=3)

239. xgboost_60_40.fit(X_train, y_train)
240.
241. y_pred_xgboost = xgboost_60_40.predict(X_test)
242. results['XGBoost_60_40'] = evaluate_metrics(y_test, y_pred_xgboost)
243.
244. adaboost_best, adaboost_score = adaboost_best_params(X_train, y_train)
245. print(f"AdaBoost Best Params: {adaboost_best}, Score: {adaboost_score}")
246.

247. base_model = RandomForestClassifier(max_depth=5, random_state=42)
248. adaboost_60_40 = AdaBoostClassifier(learning_rate=0.1,

estimator=base_model, n_estimators=50, algorithm="SAMME")

249. adaboost_60_40.fit(X_train, y_train)
250.
251. y_pred_adaboost = adaboost_60_40.predict(X_test)
252. print("AdaBoost 60:40 Results:")
253. results['AdaBoost_60_40'] = evaluate_metrics(y_test, y_pred_adaboost)

The X_train and y_train variables are used to find the best parameters using

catboost_best_params function at line 232, xgboost_best_params function at line 235, and

adaboost_best_params function at line 244. Then after the best parameters are found, the

parameters are used to train the model with X_train and y_train variables and to the X_test

variable. After the result is out, we evaluate the classification for each model at line 233, 242, and

253 using the evaluate_metrics function by inputting the y_test which is the real value from the

dataset and the classificate value from model classification.

83

Results

In this research, researchers tried several splitting sizes to three algorithms. Boosted Random

Forest that consists of AdaBoost Classifier and Random Forest Classifier as the base model,

XGBoost Classifier, and CatBoost Classifier. After researchers found the best parameters and then

found accuracy, precision, recall, and F1 score, we compared the values of each splitting method.

In this study, researchers take the highest accuracy from each splitting size.

Best Parameter Result

Tabel 2. Best Parameters

Models Splitting 70:30 Splitting 80:20 Splitting 60:40

Boosted Random
Forest (AdaBoost

Classifier and Random
Forest Classifier)

learning_rate: 0.1,
max_depth: 5,

n_estimators: 50

learning_rate: 0.5,
max_depth: 5,

n_estimators: 25

learning_rate: 0.5,
max_depth: 6,

n_estimators: 50

CatBoost Classifier learning_rate: 1,

depth: 10, iterations:
400

learning_rate: 0.1,
depth: 10, iterations:

200

learning_rate: 0.5,
depth: 5, iterations:

1000

XGBoost Classifier learning_rate: 0.1,

max_depth: 9,

n_estimators: 400

learning_rate: 0.5,
max_depth: 10,

n_estimators: 500

learning_rate: 0.1,
max_depth: 8,

n_estimators: 100

After training and cross validating many combinations of parameters with specific range of

values, this research found the best parameters for each algorithm and each data splitting size that

can be seen from Tabel 2. There are 9 best parameters that have been found.

Result For Splitting 70:30

Tabel 3. Splitting 70:30 Results

Parameters Boosted Random Forest CatBoost Classifier XGBoost Classifier

Accuracy 0.797 0.793 0.806

Precision 0.8 0.802 0.809

Recall 0.806 0.802 0.816

F1 Score 0.802 0.799 0.812

 From Tabel 3, we conclude that XGBoost Classifier has the highest accuracy of 80.7% and

Boosted Random Forest and CatBoost Classifier has the lowest accuracy of 79.3%. It means that

XGBoost Classifier can predict the class better than the rest of the models. It can be seen at the

confusion matrix at Gambar 4, that CatBoost Classifier have the least amount of True Positive and

XGBoost Classifier most amount of True Positives. CatBoost Classifier has 242 True Positives,

Boosted Random Forest has 243 True Positives, and XGBoost Classifier has 246 True Positives.

84

(a) (b) (c)

Gambar 4. (a) CM 70:30 Boosted Random Forest, (b) CM 70:30 CatBoost Classifier, (c) CM 70:30
XGBoost Classifier

Result For Splitting 80:20

Tabel 4. Splitting 80:20 Results

Parameters Boosted Random Forest CatBoost Classifier XGBoost Classifier

Accuracy 0.813 0.813 0.813

Precision 0.832 0.832 0.832

Recall 0.837 0.837 0.837

F1 Score 0.818 0.818 0.818

 From Tabel 4, we conclude that XGBoost Classifier has the highest accuracy of 83.7% and

Boosted Random Forest has the lowest accuracy of 81.8%. It means that XGBoost Classifier can

predict the class better than the rest of the models. It can be seen at the confusion matrix at Gambar

5, that Boosted Random Forest has the least amount of True Positive and XGBoost Classifier has

the most amount of True Positives. Boosted Random Forest has 165 True Positive, CatBoost

Classifier has 169, and XGBoost Classifier has 170 True Positive.

(a) (b) (c)

Gambar 5. (a) CM 80:20 Boosted Random Forest, (b) CM 80:20 CatBoost Classifier, (c) CM 80:20
XGBoost Classifier

85

Result For Splitting 60:40

Tabel 5. Splitting 60:40 Results

Parameters Boosted Random Forest CatBoost Classifier XGBoost Classifier

Accuracy 0.796 0.796 0.796

Precision 0.778 0.778 0.778

Recall 0.783 0.783 0.783

F1 Score 0.8 0.8 0.8

 From Tabel 5, we conclude that Boosted Random Forest has the highest accuracy of 79.6%

and CatBoost Classifier has the lowest accuracy of 77.8%. It means that Boosted Random Forest

can predict the class better than the rest of the models. It can be seen at the confusion matrix at

Gambar 6, that CatBoost Classifier has the least amount of True Positive and Boosted Random

Forest has the most amount of True Positives. CatBoost Classifier has 316 True Positive, XGBoost

Classifier has 318, and Boosted Random Forest has 323 True Positive.

(a) (b) (c)

Gambar 6. (a) CM 60:40 Boosted Random Forest, (b) CM 60:40 CatBoost Classifier, (c) CM 60:40
XGBoost Classifier

Discussion

In this study, researchers used several sizes of data splitting and several algorithms. Based

on the algorithm, The Boosted Random Forest has the highest accuracy of 81.3% by using the

80:20 splitting and the lowest accuracy of 79.6% by using the 60:40 splitting size. CatBoost

Classifier has the highest accuracy of 83.2% by using the 80:20 splitting and the lowest accuracy

of 77.8% by using the 60:40 splitting size. The XGBoost Classifier has the highest accuracy of

83.7% by using the 80:20 splitting and the lowest accuracy of 78.3% by using the 60:40 splitting

size. Even though the Boosted Random Forest is more complex than the other algorithms because

it used a Random Forest Classifier as the base model and the other algorithms used a Decision

Tree Classifier, it still has a lower accuracy than XGBoost Classifier. It means that XGBoost is

more suitable for this dataset.

86

Both XGBoost Classifier and CatBoost Classifier are based on gradient boosting algorithm.

In this research, XGBoost achieves a higher classification accuracy than CatBoost. XGBoost is

superior due to its efficient split finding algorithm for numerical features. While CatBoost's main

advantage in handling category data is irrelevant because the dataset doesn't have a categorical

feature. XGBoost uses L1 and L2 regularization to control model complexity, while CatBoost uses

only simple regularization during tree formation. Regularization in XGBoost helps prevent

overfitting while maintaining flexibility in modeling numerical data.

Based on the splitting, there are three sizes. The splits are 70% for data training and 30% for

data testing, 80% for data training and 20% for data testing, and 60% for data training and 40%

for data testing. The 70% and 30% splitting receives the accuracy of 79.7% , 79.3%, and 80.6%.

So the rate of accuracy of the model by using the 70% and 30% splitting is 79.9%. Then 80% and

20% splitting receives the accuracy of 81.3% , 83.2%, and 83.7%. So the rate of accuracy of the

model by using the 80% and 20% splitting is 82.7%. Then 60% and 40% splitting receives the

accuracy of 79.6% , 77.8%, and 78.3%. So the rate of accuracy of the model by using the 60% and

40% splitting is 78.6%.

From the results, we can conclude several things. First, from all algorithms, the XGBoost Classifier

that uses the data size of 80% for data training and 20% for data testing has the highest result of

accuracy by 84%. Second, the 80:20 splitting size has the highest accuracy rate than the other size

which is 82.73%. This means that the 80:20 splitting size is the most suitable size for those 3

algorithms with the specific or limited parameters. Thirdly, the 60:40 splitting size has the lowest

accuracy rate than the other size which is 78.57%. It can happen because the data for training is

too small for the model/algorithm to learn the data.

CONCLUSION

Based on the results that have been obtained from the research, it can be seen that the

accuracy of each algorithm with different dataset splitting sizes is higher than 75%. This means

that the boosting algorithms that have been used in this research can classify maternal health risks.

After several experiments, the XGBoost Classifier model that uses the data splitting size of 80%

for training and 20% for testing has a better performance than the rest of the models. It has the

highest accuracy, precision, recall, and F1-scores than the rest of the models.

Based on the splitting, the 80% data for training and 20% for testing has the highest accuracy

rate than the rest of the algorithms and the 60% data for training and 40% for testing has the lowest

accuracy rate than the rest of the algorithms. This means that the data splitting of 80% for training

and 20% for testing is more suitable for the model that has been used in this research.

For future studies, researchers can add or use a new dataset from many sources. A variety of

ensemble methodologies that have not been explored are also available. There are also several

health metrics that can be added into the dataset, like vaccination history, nutritional status, and

others.

87

REFERENCES

[1] R. Musarandega, M. Nyakura, R. Machekano, R. Pattinson, and S. P. Munjanja, “Causes of
maternal mortality in Sub-Saharan Africa: A systematic review of studies published from
2015 to 2020,” J Glob Health, vol. 11, p. 04048, 2021, doi: 10.7189/jogh.11.04048

[2] O. Olonade, T. I. Olawande, O. J. Alabi, and D. Imhonopi, “Maternal Mortality and Maternal
Health Care in Nigeria: Implications for Socio-Economic Development,” Open Access

Maced J Med Sci, vol. 7, no. 5, pp. 849–855, Mar. 2019, doi: 10.3889/oamjms.2019.041
[3] “Maternal mortality,” WHO, Feb. 22, 2023. Available: https://www.who.int/news-

room/fact-sheets/detail/maternal-mortality

[4] M. Y. Al-Hindi et al., “Association of Antenatal Risk Score With Maternal and Neonatal
Mortality and Morbidity,” Cureus, vol. 12, no. 12, p. e12230, Dec. 2020, doi:

10.7759/cureus.12230
[5] T. O. Togunwa, A. O. Babatunde, and K.-R. Abdullah, “Deep hybrid model for maternal

health risk classification in pregnancy: synergy of ANN and random forest,” Front. Artif.

Intell., vol. 6, Jul. 2023, doi: 10.3389/frai.2023.1213436. Available:
https://www.frontiersin.org/articles/10.3389/frai.2023.1213436. [Accessed: Apr. 02, 2024]

[6] I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms,
Applications, and Prospects,” IEEE Access, vol. 10, pp. 99129–99149, 2022, doi:
10.1109/ACCESS.2022.3207287

[7] K. Banujan, M. Ifham, and B. T. G. S. Kumara, “Boosting Ensemble Machine Learning
Approach for Covid-19 Death Prediction,” vol. 3, no. 1, Art. no. 1, Feb. 2023, doi:

10.4038/sljssh.v3i1.88
[8] C. Iwendi et al., “COVID-19 Patient Health Prediction Using Boosted Random Forest

Algorithm,” Front Public Health, vol. 8, p. 357, Jul. 2020, doi: 10.3389/fpubh.2020.00357

[9] Y. Mishina, R. Murata, Y. Yamauchi, T. Yamashita, and H. Fujiyoshi, “Boosted Random
Forest,” IEICE Transactions on Information and Systems, vol. E98.D, no. 9, pp. 1630–1636,

2015, doi: 10.1587/transinf.2014OPP0004
[10] J. Sanjaya, E. Renata, V. E. Budiman, F. Anderson, and M. Ayub, “Prediksi Kelalaian

Pinjaman Bank Menggunakan Random Forest dan Adaptive Boosting,” Jurnal Teknik

Informatika dan Sistem Informasi, vol. 6, no. 1, Art. no. 1, Apr. 2020, doi:
10.28932/jutisi.v6i1.2313. Available:

https://journal.maranatha.edu/index.php/jutisi/article/view/2313. [Accessed: Apr. 04, 2024]
[11] I. Abuelezz et al., “Contribution of Artificial Intelligence in Pregnancy: A Scoping Review,”

Stud Health Technol Inform, vol. 289, pp. 333–336, Jan. 2022, doi: 10.3233/SHTI210927

[12] A. Fauzi, E. Utami, and A. D. Hartanto, “Penerapan Random Forest dan Adaboost untuk
Klasifikasi Serangan DDoS,” Journal on Education, vol. 5, no. 3, Art. no. 3, Feb. 2023, doi:

10.31004/joe.v5i3.1582
[13] V. Srivardhan, “Adaptive boosting of random forest algorithm for automatic petrophysical

interpretation of well logs,” Acta Geod Geophys, vol. 57, no. 3, pp. 495–508, Sep. 2022, doi:

10.1007/s40328-022-00385-5
[14] M. Ahmed, M. A. Kashem, M. Rahman, and S. Khatun, “Review and Analysis of Risk Factor

of Maternal Health in Remote Area Using the Internet of Things (IoT),” in InECCE2019, A.
N. Kasruddin Nasir, M. A. Ahmad, M. S. Najib, Y. Abdul Wahab, N. A. Othman, N. M.
Abd Ghani, A. Irawan, S. Khatun, R. M. T. Raja Ismail, M. M. Saari, M. R. Daud, and A.

A. Mohd Faudzi, Eds., Singapore: Springer, 2020, pp. 357–365. doi: 10.1007/978-981-15-
2317-5_30

