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Abstract 

 Software Requirements Specifications is a document that describes the requirements that occur in the 

development of a software system. The category of requirements is defined in two types: Functional Requirements 

(FR) and Non-Functional Requirements (NFR). Software Requirements Engineering is critical in successfully de-

signing a piece of software. Many studies have examined the classification of software requirements using machine 

learning, but none have compared bagging algorithms with Support Vector Machine (SVM). This study compares 

text feature extraction techniques with machine learning algorithms Bagging and Support Vector Machine to solve 

the Software Requirement Classification problem. Using vectorization techniques from word2vec: Continuous Bag 

of Words and Skip-gram can help produce the best model performance for Bagging and SVM models. In this study, 

the data used is expansion data from the PROMISE repository, namely PROMISE_exp, the repository is a collec-

tion of software requirements data that has been labeled. To measure performance, this study uses an evaluation 

matrix, namely precision, recall and f1-score. As a result, the two models that have been trained using the Contin-

uous Bag of Words and skip-gram vectorization techniques will be compared to determine the more optimal model 

for classifying software requirements from the promise_exp repository. 

Keywords: CUDA, GPU, CPU, Parallel / Bagging, Word2vec, Support Vector Machine, Software Re-

quirement, Machine Learning 

 

Introduction 

Software Requirements Specifications is a document that describes the requirements that occur in the devel-

opment of a software system. The category of requirements is defined in two types: Functional Requirements (FR), 

drawing the functions that the system provides, and Non-Functional Requirements, the limitations of the developed 

application [1]. Software requirements engineering is critical in successfully designing a piece of software. Be-

cause of this, many software system developers fail because they ignore non-functional requirements. The task of 

software requirements classification is to categorize software requirements documents into functional require-

ments and non-functional requirements [1]. 

There have been many studies on the classification of software requirements into functional requirements 

and non-functional sub-classes. And the algorithms that are often used are Support Vector Machine and Naive 

Bayes. This research will compare the Support Vector Machine algorithm which is widely used in the classification 

process compared to the Bagging algorithm. According to Arfiani and Rustam [2], the Bagging algorithm is one 

of the new and most successful computational methods for clustering large and unstable data. The software docu-

mentation used in this research is the PROMISE_exp dataset. This research will compare Support Vector Machine 

algorithm with Bagging algorithm in software requirement classification on PROMISE_exp dataset. With the fea-

ture extraction technique / vektorization technique of word2vec using Continuous Bag of Words and Skip-gram 

[3], it can help to improve the performance of the model. 
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This research will compare the accuracy of 2 algorithms that will be compared, namely Bagging and Support 

Vector Machine. Later the results of the classification of software requirements made will help developers to clas-

sify software requirements documentation into appropriate categories. 

Research by Zahra et al [3] aimed at improving the automatic classification of requirements into FR and 

NFR by using pre-processing techniques such as POS Tagging. They achieved a 4.48% improvement in classifi-

cation using the C4.5 decision tree algorithm. However, these results differ from the study by Edna and Bruno [1], 

which states that SVM is better than Naive Bayes. Zijad and Walid's research [4] supports the use of SVM for 

requirements classification with good results. While Sebastiano et al's research [5] focused on the classification of 

application user reviews using the J48 algorithm. Mengmeng Lu and Peng Liang [6] supported the Bagging algo-

rithm for user review classification, finding that Bagging performed better than Naive Bayes and J48. Research 

by Arfiani and Rustam [2] showed that Bagging and Random Forest can classify ovarian cancer with 100% accu-

racy on Bagging. Indriana et al [7] compared Bagging and J48 to classify pathology on the Vertebral Column 

dataset, showing that the combination of Bagging and J48 increases accuracy. Raul et al's research [8] used Deep 

Learning with CNN models for requirements classification, while Tomas et al [9] and Urszula et al [10] focused 

on vector coding techniques such as word2vec and CBOW. 

Overall, this research aims to compare the performance of Bagging algorithm with SVM for software re-

quirements classification, and prove that the feature extraction technique of word2vec can provide good results. 

 

Research Method 

Dataset Normalization 

The dataset utilized in the research is initially raw and unclean, prompting the need for text normalization. 

The dataset comprises three columns (ProjectID, RequirementText, and class). In the first step of normalization, 

the ProjectID column is removed, and techniques are applied to clean the data within the RequirementText column. 

The normalization methods employed are: 

1. Tokenization: Assigning a value to each sentence in the data to facilitate entry into the vector space. 

2. Stop word removal: Eliminating words deemed unimportant, such as "and, the, is, etc." 

3. Changing uppercase letters to lowercase: Ensuring uniformity during machine learning training to opti-

mize model performance. 

4. Lemmatization: Transforming words with symbols, such as converting "running" to the base word "run". 

These normalization techniques contribute to enhancing the data for optimal performance during the vec-

torization and training processes. 

 

 

Vektorization Technique 

 In this stage, the normalized and tokenized dataset undergoes conversion into a numerical vector using the 

Neural Network vectorization technique, specifically word2vec. Two models, Continuous Bag of Words (CBOW) 

and Skip-gram, are employed in the research. Leveraging the word2vec model allows the capture of semantic and 

correlated words, ultimately enhancing the accuracy of the trained model [9] [11]. 
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 The CBOW architecture comprises an input word, a hidden layer or projection, and an output word. Its 

primary objective is to predict the output word when provided with input words surrounding the target word [9]. 

For instance, in the sentence "Ken lives in Kendal district," the word "lives" serves as the target to be predicted. 

To make this prediction, input words around the target are utilized. 

 

 

 Skipgram is the opposite of CBOW, consisting of word input, hidden layer/projection and word 

output. If CBOW uses n-hot encoded input with one-hot encoded output, then Skipgram uses one-hot 

encoded input with n-hot encoded output. The goal of Skipgram is to predict the context (output) around 

the current word (input) [9]. 

 

Model Training 

In this training stage, using 2 algorithm models, namely Support Vector Machine and Bagging.. To 

avoid overfitting, this study uses crossvalidation. From the crossvalidation stage, the dataset will be di-

vided into k folds, in this study using 10-fold to avoid overfitting, as in [1]. The dataset will be divided 

into 9 training subsets covering 90% of the total dataset and 1 subset will be the test set covering 10% of 

the total dataset [1]. 

Support Vector Machine 

Support Vector Machine (SVM) is a widely utilized set of supervised learning machines known for tasks 

such as classification, regression, and outlier detection. In this research, SVM is applied to classify software re-

quirements into multiple classes. Specifically, a linear kernel is employed in this study. SVM functions by testing 

and identifying a hyperplane that effectively separates two or more data classes in the given dataset. 

Bagging 

Bagging classifier is one of the ensemble learning techniques in machine learning. Basically Bagging a set 

of base Classifiers, will later aggregate their predictions to become the final prediction or averaged to produce a 

prediction value. 

  

 In this research, the sample dataset undergoes resampling to create specified bags. Following the 

resampling, each bag is individually trained using a machine learning classification model, specifically Support 

Vector Machine (SVM). The predictions from each model are then aggregated or averaged to obtain the final 

prediction value. Despite training the model three times with consistent preprocessing and model parameters, var-

iations in the output were observed. Therefore, the results presented in this study are based on the outcomes from 

the last compilation. 
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Measuring Performance 

  

 In this study, model performance is assessed using evaluation metric techniques, including accuracy, pre-

cision, recall, and F1-score. The evaluation involves understanding the confusion matrix components: 

TP (True Positive): Correctly predicted positive labels. 

TN (True Negative): Correctly predicted negative labels. 

FP (False Positive): Incorrectly predicted positive labels. 

FN (False Negative): Incorrectly predicted negative labels. 

Now, let's briefly discuss each metric: 

Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

A commonly used metric, calculated as the ratio of correctly predicted labels (True Positive + True Negative) 

divided by the total number of labels. However, it may be less reliable if the dataset is imbalanced. 

 

Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision measures the accuracy of positive label predictions. It focuses on the ratio of correctly predicted positive 

labels to the total predicted positive labels, helping to assess the model's ability to avoid false positives. 

 

Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Recall quantifies the accuracy of correctly predicted positive patterns. It considers the ratio of correctly predicted 

positive labels to all actual positive labels, providing insights into the model's capacity to identify positive instances. 

 

Figure 4 Confusion Matrix 
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F1-Score 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

F1-Score represents the harmonic mean of Precision and Recall, serving as a balanced measure of overall model 

performance. 

 

These metrics collectively provide a comprehensive evaluation of the model's effectiveness in classification tasks. 

 

Analysis of Results 

This research will analyze results by creating four models: 

1. SVM algorithm with CBOW vectorization technique. 

2. SVM algorithm with skip-gram vectorization techniques. 

3. Bagging algorithm with CBOW vectorization techniques. 

4. Bagging algorithm with skip-gram vectorization techniques. 

These models will be trained and evaluated using precision, recall, and f1-score metrics. A comparison of 

the four models will determine which one exhibits the best performance based on the evaluation metrics. 

 

Result and Discussion 

 

Table 1 Result Classification Multi Class with Training set & Testing set 

 
Training Testing 

Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy 

Figure 5 Result Classification with Multi Class 
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SVM 

CBOW 
97.5 97.4 97.4 97.4 78 77.4 76.4 77.4 

SVM 

Skipgram 
96.9 96.7 96.7 96.7 79.9 79.4 78.7 79.4 

Bagging 

CBOW 
96 95.8 95.7 95.8 75.7 75.6 74.2 75.6 

Bagging 

Skipgram 
95.2 95.1 95 95.1 77.8 78.2 77 78.2 

In Table 1 the testing data has a fairly far value vulnerability, this is called overfitting. This happens because 

of classifying software requirements in Multi Class, where there is no balance of classes in the training set and test 

set. What is meant by Multi Class is like Figure 5 that represents the amount of data and its classes. In the non-

functional requirement class, it is translated into non-functional requirement sub-classes with an unbalanced 

amount of data between one class and the functional requirement class. Therefore, this research also classifies and 

analyzes for Binary Class. 

Table 2 Result Classification Binary Class with Training set & Testing set 

 

Training Testing 

Precision Recall 
F1-

Score 
Accuracy Precision Recall 

F1-

Score 
Accuracy 

SVM 

CBOW 
95.4 95.4 95.4 95.4 89 88.7 88.7 88.7 

SVM 

Skipgra

m 

95.2 95.2 95.2 95.2 89.6 89.2 89.2 89.2 

Figure 6 Result Classification with Binary 

Class 
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Bag-

ging 

CBOW 

95.5 95.5 95.5 95.5 89.1 88.8 88.8 88.8 

Bag-

ging 

Skipgra

m 

95.3 95.3 95.3 95.3 88.8 88.7 88.7 88.7 

 In comparing Table 2 and Table 1, overfitting is not a significant concern as the classification is 

based on a Binary Class (Functional Requirement and Non-functional Requirement). The inclusion of 

non-functional requirement data from the Multi-Class does not result in imbalance, as it has numerous 

sub-classes that are balanced with the functional requirement class. Table 2 indicates a 10% increase in 

all values for the test data compared to Table 1. 

 

 Table 1 shows a stable prediction value on the test data with a slight difference ranging from 

1.2% to 1.6%. This difference is attributed to the number of sub-classes classified along with the 

amount of data/sampling in the training and testing sets during the cross-validation process. The stabil-

ity in model performance in Table 2, as evidenced by consistent recall, accuracy, and f1-score values, 

suggests a balanced division of classes and samples in the training/testing sets, enabling the model to 

learn the data more accurately. 

 

 In this context, Skipgram proves more suitable for predicting words around its input compared 

to predicting empty words (CBOW). The hyperparameter tuning of word2vec can further enhance 

model accuracy. The conclusion drawn is that, in software requirements classification with the PROM-

ISE_exp dataset, cleaned data exhibits rarity or variability from one data point to another. Skipgram's 

suitability for identifying infrequent, or rare, words is highlighted. 

 

 Furthermore, the research explores classification with an increased test dataset, ranging from 50 

to 969. The findings indicate that as the dataset size increases, accuracy improves. This evaluation ex-

tends to both multi-class and binary class scenarios, providing insights into the model's accuracy across 

different methods. 

Table 3 Result Classification Multi Class with Incrase Data 

Model N data Precision Recall F1-Score Accuracy 

CBOW-SVM 

50 32.4 31.9 30.1 31.9 

100 61.5 61.9 59.4 61.9 

250 64.5 60.3 59.9 60.3 

400 66.3 65.5 63.9 65.5 

550 73.3 73 71.5 73 

700 75.2 74.1 73 74.1 

850 76.2 74.7 74 74.7 

969 78 77.4 76.4 77.4 
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Skipgram-SVM 

50 52.8 55.9 51.4 55.9 

100 53.9 48 48.6 48 

250 61.8 62.7 60 62.7 

400 68.1 68.7 67 68.7 

550 65.4 65.4 63.9 65.4 

700 69.5 69.2 68.1 69.2 

850 73.9 71.1 71 71.1 

969 79.9 79.4 78.7 79.4 

CBOW-BAG-

GING 

50 - - - - 

100 - - - - 

250 - - - - 

400 - - - - 

550 - - - - 

700 69.5 70.7 68.4 70.7 

850 73.5 74.2 72.4 74.2 

969 75.7 75.6 74.2 75.6 

Skipgram-

BAGGING 

50 - - - - 

100 - - - - 

250 - - - - 

400 - - - - 

550 - - - - 

700 68/9 68.5 66.7 68.5 

850 71.7 71.6 70.1 71.6 

969 77.8 78.2 77 78.2 

 

It turns out that in the case of this research, the Bagging Algorithm is not able to classify with a small amount 

of data. Moreover, data with many labels such as the multiclass above. 

Table 4 Result Classification Binary Class with Incrase Data 

Model N data Precision Recall F1-Score Accuracy 

CBOW-SVM 

50 72.8 72 68.2 72 

100 79.9 76 75.9 76 

250 83.9 82.8 82.9 82.8 

400 85.5 84.7 84.7 84.7 
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550 86.4 86.3 86.3 86.3 

700 88.7 88.7 88.7 88.7 

850 88.4 88.4 88.4 88.3 

969 89 88.7 88.7 88.7 

Skipgram-SVM 

50 79 65.9 66.1 65.9 

100 76.7 72.9 73.2 72.9 

250 83.5 82.4 82.4 82.4 

400 87.5 87.2 87.2 87.2 

550 86.7 86.7 86.7 86.7 

700 88.8 88.5 88.5 88.5 

850 89.4 89.1 89.1 89.1 

969 89.6 89.2 89.2 89.2 

CBOW-BAG-

GING 

50 74 70 68.2 70 

100 74.8 64 64.6 64 

250 81.5 81.1 81 81.1 

400 88.6 88.2 88.2 88.2 

550 88 87.4 87.4 87.4 

700 87 86.7 86.7 86.7 

850 88.8 88.6 88.6 88.6 

969 89.1 88.8 88.8 88.8 

Skipgram-

BAGGING 

50 68.3 65.9 63.6 65.9 

100 77.9 74.9 74.8 74.9 

250 82.9 81.6 81.6 81.6 

400 85.2 84.5 84.4 84.5 

550 86 85.6 85.6 85.6 

700 88.1 87.5 87.6 87.5 

850 88.5 88.3 88.3 88.3 

969 88.8 88.7 88.7 88.7 

 
Data balance is the biggest influence in this research case. In Multi Class classification on data 50-550 

Bagging algorithm cannot work but in Binary Class classification on all data can classify. In the case of Binary 

Class when 100 data, the model has produced optimal results in the SVM model. And in this study proves that 

SVM is better than Bagging. 

Table 1 shows the occurrence of overfitting in both models, this occurs because the diversity of sub-classes 

classified has uneven data. 
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Figure 7 shows the data imbalance between non-functional sub-classes. Take for example the SU or Security 

label, which only has 22 data. If you enter into cross-validation logic, with K-Fold 10, then from 969 data will be 

divided into 10. This means that 1 Fold may have more than 1 SU data or even none because the data is randomized. 

If the first class does not have SU data, it will affect the prediction value of the SU class. So in this research, it 

also examines binary classes or Functional and Non-functional requirements to prove that if there is no data im-

balance between sub-classes, it will not experience overfitting. 

Table 2 shows a decrease in overfitting, with a significant increase of 10%. This shows that the inequality 

in sub-classes in the data greatly affects the performance of the model. 

This test uses the same hyperparameters between SVM models with CBOW vectorization techniques and 

Bagging models with Skipgram vectorization techniques, and so on. Tables 1 and 2 show that SVM is better than 

Bagging. SVM algorithm is 1.2% - 1.8% better than Bagging for Multi Class cases. In the case of binary class the 

difference is not far enough between Bagging and SVM algo, only 0.2% - 0.3% different. With Skipgram vector-

ization technique produces better accuracy than CBOW. That way problem formulation number 1 can be answered, 

that Bagging is not better than SVM in the classification of Software Requirement using word2vec vectorization 

preprocessing technique. 

Figure 7 Jumlah Data Multi Class 
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To answer problem formulation number 2, it can be seen from tables 3 and 4 When viewed in table 3, the 

Bagging model cannot classify multi-class software requirements on a small dataset. Because of the inequality in 

classes on a small dataset, the bagging algorithm fails to classify. 

Figure 8 above shows the imbalance of classes, this is what causes bagging to fail in classifying. However, 

table 1 shows that bagging can process when the data is 700 data of multi-class, as in Figure 9. In table 1 the 

Bagging Algorithm is able to classify with 50 data because this research wants to solve class imbalance by classi-

fying in binary class. So actually Bagging can classify small datasets, but if there is a complex class division and 

results in class imbalance it will make it difficult for bagging to classify.   

 

 

 

Conclusion 

In conclusion, the SVM algorithm outperforms bagging in software requirements classification using 

CBOW and Skipgram vectorization techniques. This is attributed to the potential inconsistencies in values when 

compiling word2vec vectorization twice, leading to lower average values. Notably, bagging proves suitable for 

small datasets as well, not limited to large datasets, provided that the features or labels are not overly complex, 

and the data is balanced [6]. 

For future research, it is recommended to expand the PROMISE_exp dataset, particularly in the non-func-

tional requirement sub-class. Additionally, optimizing hyperparameters for CBOW, Skipgram, and bagging algo-

rithms can enhance model performance, ensuring the exploration of equivalent hyperparameters for more robust 

results. The current research employs original hyperparameters for the bagging algorithm, suggesting the potential 

for improvement with the discovery of optimal hyperparameters in future studies. 

 

Daftar Pustaka 

Figure 8 50 Datasets of Multi Class 

Figure 9 700 Datasets of Multi Class 
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