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ABSTRACT 

Derivative NFTs are modified versions of the original NFTs that have been altered or 

obtained through additional processing. This modification process may include changes in the 

color, appearance, composition, or content of an existing digital asset. Penelitian ini bertujuan 

untuk mengembangkan algoritma prediksi untuk mengklasifikasikan derivatif NFT (Non-Fungible 

Token) menggunakan teknik deep learning. In this context, the developed algorithm uses the 

DenseNet-201 architecture and involves steps such as data comprehension, data preparation, 

image augmentation, and the use of callbacks to stop model training when it reaches the desired 

level of accuracy. This study uses NFT-derived datasets collected by the researchers themselves, 

because there is no source that provides a large number of NFT datasets. Through experiments 

conducted, it is known that the use of DenseNet-201 architecture with a target size of 50x50 or 

150x150 can produce a good level of accuracy, reaching 86-99%. The experimental results show 

that the implemented DenseNet-201 model is capable of classifying NFT derivatives with a good 

level of accuracy. The use of data augmentation and adjustment of certain hyperparameters also 

affects the improvement of model accuracy. In addition, analysis and visualization of the results 

were carried out using a confusion matrix to evaluate the performance of the model in classifying 

each NFT derived class. 
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1.1 CHAPTER 1 INTRODUCTION 

1.1.1 Background 

With the advancement of technology, artworks are no longer in physical form but today there 

are also digital forms. Starting from 3D models, illustrations, character drawings, and others - 

others. Since the emergence of the Non-Fungible Token or commonly known as NFT in 2014[1], 

it has now been able to transform the views of art collectors and digital artists to develop it wider. 

Basically, NFT is a digital artwork that is printed on the blockchain network to give the identity 

or label of the encrypted work that the work is owned by someone and cannot be counterfeited. 

Some of the NFT images on the marketplace usually have their own avatars and art styles, but 

many also have some communities that mimic the avatar or are known as NFT derivatives so that 

they can spoil the collector as well as harm NFT itself. This is because people tend to prefer to 

imitate existing images so that their images are easier to highlight from the collector. In this project, 

the authors discuss how to detect NFT derivatives using Convolutional Neural Network (CNN). 

In creating this NFT derivative detection program, algorithms and datasets are needed. 

Convolutional Neural Network with transfer learning DenseNet201 model is an algorithm that can 

solve this problem.  CNN is a type of simulated neural network designed to process image data 

efficiently. CNN uses convolutionary filters to detect important features in the image and then use 

them to make predictions. The data set used by the author is 3000 NFT images that have been 

made by themselves. The 3000 images are divided into 3 types, each containing 1000 images that 

will be inserted into the system repeatedly to get accurate information and get the maximum 

prediction. 

Thus, using Convolutional Neural Network (CNN) with transfer learning DenseNet201 

model, the authors could predict NFT images with high accuracy. Using DenseNet201 model, the 

publisher can also find out which parameters are suitable to produce predictions with high 

accuracy. The success rate of the algorithm used will be described in more detail in chapter 3. 

 

 

1.1.2 Problem Formulation 

From this background, the author can formulate problems that will be answered in the 

research process and discuss in the final part, which questions will be discussed as follows: 

1. How does DenseNet201 perform in predicting derivative NFT images? 

2. What hyperparameter and learning algorithm is suitable for solving prediction 

derivative NFT image on this project? 

1.1.3 Scope 

There are also limitations of problems that are necessary in the creation of this program. So 

as not to go beyond the objectives of this project, among them are: 
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1. Uses the NFT image type with a total of 3000 images from the author with a size 

of 480x480 pixels as a dataset for the prediction process. 

2. On this project focused on NFT derivative prediction using DenseNet201. 

1.1.4 Objective 

To classify an image, the human eye can immediately judge whether the image has 

something in common or not, imitating other images or not. The purpose of making this NFT 

derivative prediction program is in addition to knowing a NFT said derivative or not also to know 

how DenseNet201 model works in the process of predicting NFT images. 

 

1.1.5 Chapter 2 Literature Study 

In the preparation of this project there are also several journals that the author uses as 

references. Since no one has yet researched about the prediction of NFT images using CNN then 

with the presence of several of these journals, the author can explain and analyze how CNN works 

in the image predictions of projects already made by several sources so that this project to be made 

has the same scope and also to avoid plagiarism. Some of these journals will be described in 

narrative form, among them: 

Norman Meuschke[2], this book discusses about how to introduce an image-based 

plagiarism detection approach that adapts itself to forms of image similarity found in academic 

work. The approach is adaptable because it includes techniques for analyzing heterogeneous image 

features, employs analysis techniques only when they are appropriate for the input image, employs 

a flexible method for identifying suspicious image similarities, and makes it simple to incorporate 

new analysis techniques in the future. The research intends to build an effective detection strategy 

capable of recognizing a wider subset of potentially suspicious image similarities and to derive 

requirements for the approach by looking at photographs in the VroniPlag collection. The AlexNet 

design is used in the deep convolutional neural network (CNN) used in this study. It has three 

completely linked layers, a softmax output layer, and five convolutional layers. The CNN is trained 

using the Caffe framework, an open-source deep learning system developed by the Berkeley 

Vision and Learning Center. The Berkeley Vision and Learning Center's open-source deep 

learning Caffe framework is used to train the CNN. This study uses the stochastic gradient descent 

(SGD) optimizer, a well-liked optimization technique for deep neural network training. The SGD 

optimizer modifies the network's weights in the direction of the loss function's negative gradient 

with respect to the weights. In this project, the learning rate—which determines the step size of 

the weight updates—is set to 0.01. A total of 50,000 iterations and a batch size of 128 are used to 

train the CNN. The training data is augmented by randomly cropping and flipping the images to 

increase the size of the training set and reduce overfitting. The CNN achieves an accuracy of 92% 

for photographs and 100% for bar charts, as manually checked by the authors. The training data in 

this project consists of images that are labeled according to their suitability for being analyzed 

using different analysis methods. The images are extracted from a set of 196 academic works 

containing alleged instances of plagiarism, which is the VroniPlag collection. The images are 



 

 PROXIES VOL.6 NO.1, TAHUN 2022  50 
 
 

classified into three categories: photographs, bar charts, and other image types. The CNN is trained 

using the Caffe framework, which is an open-source deep learning framework developed by the 

Berkeley Vision and Learning Center. The training data is augmented by randomly cropping and 

flipping the images to increase the size of the training set and reduce overfitting. The CNN is 

trained using a batch size of 128 and a total of 50,000 iterations. The learning rate, which controls 

the step size of the weight updates, is set to 0.01. The CNN achieves an accuracy of 92% for 

photographs and 100% for bar charts, as manually checked by the authors. 

Praveen Krishnan[3], this book discusses about how to develop a system for matching 

handwritten document images. The system employs a convolutional neural network (CNN) named 

HWNet, which is trained using a multinomial logistic regression loss function on a dataset of 

handwritten words (iiit-hws). The HWNet design consists of two fully connected layers with 2048 

neurons each, five convolutional layers with 64, 128, 256, 512, and 512 square filters, and a final 

fully connected layer with a dimension equal to the number of classes (10K in this example). After 

each weight layer until the last one, rectified linear units are used as the non-linear activation units, 

and max pooling is utilized. This is followed by the first, second, and fourth convolutional layers. 

The system also uses transfer learning from synthetic domain (iiit-hws) to real world setting using 

popular handwritten labeled corpora such as iam and gw. The training data is rendered using 100 

randomly sampled fonts with varying kerning level, stroke width, and mean foreground and 

background pixel distributions. The system also performs Gaussian filtering to smooth the final 

rendered image and learns a case insensitive model for each word category by performing three 

types of rendering: all letters capitalized, all letters lower, and only the first letter in caps. The 

purpose of the project is to enhance and improve the performance of word spotting in the 

handwritten domain, which plays an important role in matching similar documents. The results of 

this project show that the proposed HW-DocSim system, which uses a combination of CNN-based 

feature extraction and a matching algorithm with locality constraints, outperforms existing state-

of-the-art methods for detecting plagiarism in handwritten documents. The system achieves an 

nDCG score of 0.8569 and an AUC of 0.9465 on the HW-DocSim dataset, which contains 1000 

handwritten pages from more than 100 students. The system also performs well on the HW-1K 

dataset, which contains nearly 1K handwritten pages from more than 100 students. The authors 

conclude that the proposed system can be used as an effective tool for detecting plagiarism in 

handwritten documents, which is an important task in many fields such as education, law, and 

journalism. They also suggest that future work can focus on improving the system's performance 

on documents with graphics and mathematical expressions. 

Srikar Appalaraju[4], this book discusses about how to develop a content-based image 

similarity system using deep learning models. The project aims to explore effective and faster ways 

to train such models using curriculum learning. The dataset used in this project is from the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012. The project uses a custom 

multi-scale CNN architecture, where three different CNNs are employed instead of using one CNN 

and sharing lower layers. The CNNs are trained using a curriculum learning methodology, which 

introduces easier training examples first and gradually increases the difficulty level of the 
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examples. The CNNs are designed using a contrastive loss function, and the models are evaluated 

in terms of accuracy. The results of this project show that the proposed content-based image 

similarity system using deep learning models with curriculum learning and a custom multi-scale 

CNN architecture outperforms the baseline model (pre-trained VGG16 CNN) in terms of accuracy. 

The joint embedding from all three CNNs has a 4096 embedding, and the effect of embedding 

dimension on the final performance was also studied. The project found that for shallower CNN 

architectures, 512 and 1024 embedding space were sufficient, while for deep CNN, 4096 

embedding was used. The project concludes that curriculum learning is an effective and faster way 

to train deep learning models for content-based image similarity. The custom multi-scale CNN 

architecture and the use of a contrastive loss function also contribute to the improved performance 

of the proposed system. The project also highlights the importance of detecting and preventing 

model overfitting, testing with a clean test set, and debugging to better understand the mistakes 

the model is making. 

Eman Al-Thwaib[5], this book discusses about how to develop an Arabic plagiarism 

detection system and to create a corpus dedicated to plagiarism detection that is authentic, big, 

versatile, and richly annotated. The JUPlag corpus was designed to compile academic texts for the 

purpose of training and testing the Arabic plagiarism detection system that is to be developed. The 

corpus was also intended to function as a test bed for the evaluation of plagiarism detection 

techniques. The dataset of this project is the JUPlag corpus, which is a collection of academic texts 

compiled from 2,312 dissertations defended by postgraduate students at the University of Jordan 

between 2001 and 2016. The corpus was designed to be used for training and testing an Arabic 

plagiarism detection system and as a test bed for evaluating plagiarism detection techniques. The 

JUPlag corpus was used to train and test a convolutional neural network (CNN) for Arabic 

plagiarism detection. The CNN was trained on a subset of the corpus and tested on a separate 

subset. The CNN architecture consisted of three convolutional layers, each followed by a max-

pooling layer, and two fully connected layers. The input to the CNN was a sequence of word 

embeddings, which were learned during training. The CNN was trained using the Adam optimizer 

and cross-entropy loss function. The results showed that the CNN was able to achieve high 

accuracy in detecting plagiarism in Arabic texts. The best performing CNN model achieved an 

accuracy of 98.5% on the test set. 

Eshwar[6], this project discusses about similar fashion apparel detection and classification 

using computer vision techniques. The dataset used in this project is collected from the e-

commerce website Myntra, and it consists of 5093 images ranging over 5 classes. The CNN is 

used as an efficient technique for recognizing objects in images or videos. Transfer learning is 

employed to generate bottleneck values using the weights from the previous pre-trained layers and 

the images. The final layer of the CNN is trained to identify new classes. The architecture of the 

CNN used in this project is the GoogLeNet architecture, which is a 22 layer deep neural network 

initially trained on the ImageNet dataset. The final layer of the Inception v3 GoogLeNet model is 

removed and a new final layer is trained to classify the apparel dataset. The training data in this 

project is divided into a training set and a testing set containing 80% and 20% of the total number 
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of images respectively. The result of this project is a system that can accurately classify different 

types of apparel with high accuracy and suggest similar apparel for a query image belonging to the 

training set. 

Azahro Choirunnisa[7], discusses the prediction of cat races using CNN with the 

EfficientNet-B0 architecture. The background of this project is that the number of native cat breeds 

is only 1% compared to mixed-race cats, so a cat prediction system is needed to identify cat types.  

With the various types of cats, there are also several images that have patterns and the similar 

posture. Therefore with this project the author wants to make a cat image classifier program based 

on race. The method used in this project is CNN using the EfficientNet-B0 architecture and 

comparing the Adam and RMSProp optimizers. The dataset obtained for this project comes from 

kaggle and google images as many as 2700 images containing 9 different cat breeds. 2160 training 

data, 540 validation data and 180 test data. The training data is pre-processed using a Gaussian 

blur filter and then enters the augmentation process to enrich the variations of the training data. 

Trials on this project were carried out in 3 scenarios, namely the first to compare if using a model 

with data pre-processing and without pre-processing, then to compare the optimizer Adam and 

RMSProp with a learning rate of 0.001 then the third with a learning rate of 0.0001. The results of 

this prediction produce the highest accuracy of 98% using the Adam and RMSProp optimizer with 

a learning rate of 0.001 but overfitting still occurs. the most optimal model gets 95% accuracy and 

91% validation accuracy using RMSProp with a learning rate of 0.0001 and using data pre-

processing. 

Hendry Fonda[8], discusses the prediction of Riau batik using convolutional neural network. 

with the existence of various and even similar batik motifs, therefore a classification using CNN 

is needed in this project. Riau Batik is known since the 18th century and was used by royal nobles. 

Riau Batik is made using stamps mixed with dyes then printed on the fabric. The fabric used is 

usually silk. The background of this project is that, compared to Javanese batik, Riau batik is very 

slow to be accepted by the community. In this project, CNN will conduct training and testing on 

Riau batik so that a collection of batik models that have been classified based on the characteristics 

of Riau batik can be determined so that images can be determined which are Riau batik and which 

are not Riau batik. This project uses tensor flow with a training process totaling 168 images with 

68 images in the form of Riau batik and 100 non-Riau batik images. Iteration using 30 epochs 

obtained an accuracy value from the data above is 65% with loss values of 2.5% and 2.1%. 

Predictions using CNN produce riau batik instead of riau batik with 65% accuracy. The accuracy 

of 65% is due to basically many of the same motifs between Riau batik and other batik with the 

difference lies in the color of the cerap on Riau batik. 

Song A[9], This paper discusses a new fine-grained face recognition method for similar face 

recognition using the attention mechanism which combines the Internal Features and External 

Features. The authors also show how a largescale similar face dataset can be assembled by a 

combination of automation and human in the loop, and divide the dataset into five grades according 

to different degrees of similarity. The proposed method improves the true positive rate and 
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recognition accuracy rate for the LFW and CASIA-WebFace database, as well as the similar face 

dataset (SFD). The paper also introduces the IE-CNN model, which enhances the internal and 

external features of the face, and proposes a step-by-step training method to train the model. In 

this project, a face feature enhancement model called IE-CNN based on deep CNN was proposed. 

The IE-CNN model enhances the internal and external features of the face. The model uses a 

bottom-up top-down structure for the internal design of IE-CNN, which mimics the fast 

feedforward and feedback attention process. A five-way parallel structure is adopted for the five 

local feature maps, and each branch parameter is not shared. The model also uses a step-by-step 

training method to train the model. The experimental results show that the proposed method 

improves the true positive rate and recognition accuracy rate for the LFW and CASIA-WebFace 

database, as well as the similar face dataset. The proposed method in this project improves the true 

positive rate and recognition accuracy rate for the LFW and CASIA-WebFace database, as well as 

the similar face dataset (SFD). The experimental results show that the proposed IE-CNN model 

enhances the internal and external features of the face, and the step-by-step training method to 

train the model is effective. The fusion of complementary features in the IE-CNN model was 

successful, and the proposed method performed well with five grades of similarity. The recognition 

accuracy rate improved by 35.84% and the true positive rate improved 15.84% for grade I, and as 

the picture similarity in the dataset decreases from II to V, the recognition accuracy rate improved 

by 18.80 – 28.44%. 

Xie T[10], this book discusses about visual robot relocalization based on multi-task and 

image-similarity strategy. The authors found that convnet representations trained on classification 

problems generalize well to other tasks. The propose is, a multi-task CNN for robot relocalization, 

which can simultaneously perform pose regression and scene recognition. Scene recognition 

determines whether the input image belongs to the current scene in which the robot is located, not 

only reducing the error of relocalization but also making understand with what confidence it can 

trust the prediction. Meanwhile, the authors found that when there is a large visual difference 

between testing images and training images, the pose precision becomes low. Based on this, the 

authors present the dual-level image-similarity strategy (DLISS), which consists of two levels: 

initial level and iteration-level. The initial level performs feature vector clustering in the training 

set and feature vector acquisition in testing images. The iteration level, namely, the PSO-based 

image-block selection algorithm, can select the testing images which are the most similar to 

training images based on the initial level, enabling us to gain higher pose accuracy in testing set. 

The method considers both the accuracy and the robustness of relocalization, and it can operate 

indoors and outdoors in real time, taking at most 27 ms per frame to compute. Finally, by used the 

Microsoft 7Scenes dataset and the Cambridge Landmarks dataset to evaluate our method. It can 

obtain approximately 0.33 m and 7.51◦ accuracy on 7Scenes dataset, and get approximately 1.44 

m and 4.83◦ accuracy on the Cambridge Landmarks dataset. Compared with PoseNet, our CNN 

reduced the average positional error by 25% and the average angular error by 27.79% on 7Scenes 

dataset, and reduced the average positional error by 40% and the average angular error by 28.55% 

on the Cambridge Landmarks dataset. We show that our multi-task CNN can localize from high-
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level features and is robust to images which are not in the current scene. Furthermore, we show 

that our multi-task CNN gets higher accuracy of relocalization by using testing images obtained 

by DLISS. 

Kassim[11], this paper discusses an attribute-based query & retrieval system designed for 

fashion products. This system addresses the problem of carrying out fashion searches by the query 

image and attribute manipulation, e.g. replacing long sleeve attribute of a dress to sleeveless. The 

authors present the attributes in two groups: (1) general attributes (category, gender etc.) and (2) 

special attributes (sleeve length, collar etc.).. To facilitate more specific similarity learning, 

clothing items are represented by their structural subcomponents or ”parts”. The parts are 

estimated using an unsupervised segmentation method and used inside the proposed Convolutional 

Neural Network (CNN) as an attention mechanism. Meaning, different parts are connected to the 

special attributes, e.g. sleeve part is connected with sleeve length attribute. With this mechanism, 

part-based triplet ranking constraint is applied to learn similarity of each special attribute 

independently from one another in a single network. In the end, the well-defined features are used 

to conduct the fashion search. Additionally, an adaptive relevance feedback module is used to 

personalize the fashion search process with the feature descriptions. For the experiments, a new 

dataset is constructed containing 101,021 images which consist of pure clothing items. Besides 

achieving decent retrieval results in our dataset, the experiments show that proposed technique 

outperforms different baselines and is able to adapt towards user’s requests. CNN’s proved 

themselves to be very useful in both image recognition and retrieval problems. The authors adopt 

the well-known CNN model AlexNet. The proposed method achieves the best performance again 

with 53.1% top-20 retrieval accuracy. The second best performing method is AMNET [28] and 

gives 45.8% top20 retrieval accuracy. Removing the part extraction from the network decreases 

top-20 retrieval accuracy by around 7.5% which is a huge deal. AMNET and the method with part 

extraction perform quite similar to each other. If the authors were to remove both part extraction 

and the ranking loss would result in 40.1% top-20 retrieval accuracy which is better than directly 

using the classic method as it gives 33.2% top-20 retrieval accuracy. 

1.2 CHAPTER 3 RESEARCH METHODOLOGY 

This chapter describes in detail the steps taken on this project until later in the end find results 

that match what is done. This research stage discusses the workings of the system developed in 

this project. Here are some steps to take find the right and correct results. 

1.2.1 Research Process 

In conducting this research,  the author needs knowledge first  to make a project, especially 

knowledge about  Convolutional Neural Network (CNN) and about  Generative NFT. So by 

knowing these two things, researchers can continue research aimed at predicting whether the NFT  

image is an NFT derivative. 

In  this project, the processes carried out are: 

1. Formulate background, objectives, scope, and problem formulation. 
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2. Research  articles or journals related to the  project carried out. 

3. Create datasets for training and testing, study the  algorithms that have been used, 

and learn the best parameters  to use. 

Implementation and analysis of the results that have been carried out and then provide 

conclusions. 

1.2.2 Collecting Datasets 

To obtain the dataset, authors need thousands of NFT images for training and testing 

processes. From that, the author created an image generator program that was able to produce 

thousands of combinations of a series of layers of images created by the author. The writer creates 

3 variants of avatars, each of which has a total of 1000 images and will be labeled or named for 

grouping. With this generator, the writer gets 3000 images as a dataset. Here are the steps – steps 

to generate thousands of images: 

 

Drawing Characters 

The first step is for the writer to draw a character with separate layers as in Figure 3.1. Like 

the body image drawn first, then the next layer is a picture of clothes with a position that has been 

determined by the author, then the next layer is the mouth, eyes, hair and accessories. In this step, 

the author uses illustration software, namely Clip Studio Paint with a canvas size of 480x480 

pixels. 

Counting the Number of Combinations 

The image of one avatar consists of 6 layers including, the character's body, outfit, eyes, 

mouth, and accessories. Each part has several variants, namely the body consisting of 9 variants, 

outfit 6, mouth 7, eyes 7, hair 7, and accessories 4. With this variant, it will produce 74088 unique 

avatar combinations because one with another is different from the formula 9 x 6 x 7 x 7 x 7 x 4. 

The more variants of each category, the more unique the combination will be. 
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Layer Grouping 

After creating a series of layers, each part must be stored in the images folder consisting of 

sub folders 0_body, 1_outfit, 2_eyes, 3_mouth, 4_hair, and 5_accessories folders in PNG format 

that have a transparent background. The function of saving images in PNG format is because the 

format has an alpha channel which means it can control the transparency or opacity of colors. The 

value can be represented as a real value, a percentage, or an integer. 

Library dan Module 

In building this generator   there are also several libraries needed so that the program can run 

as expected.  Some libraries include: 

1. Pillow, PIL, or the Python Image Library, is the first library that gave Python the 

ability to work with images. PNG, TIFF, and BMP are just a few of the prominent 

file types that Pillow supports. Python and Pillow both offer additional decoder 

libraries if needed.  masking, filtering, enhancing, adding text, pixel-by-pixel 

manipulation, and other types of modification.    The first step in utilizing the pillow 

library is installing it using a virtual environment by entering pip install pillow.   

You can run this library by typing from PIL. 

2. The Python programming language offers the OS module as a module to access 

operating system functions. Users can access files, folders, and other data kept on 

the operating system via this module. Additionally, this module enables users to 

retrieve details about the system's active processes and execute the shell from 

Python.  

3. Random, or the random module in Python, is a module that offers methods and 

functions for generating random numbers. This module can be used for many 

different things, like generating random numbers for simulations or games and 

establishing strong passwords. Additionally, this module offers a function for 

selecting things at random from a list or order. So you can also produce random 

integers with a certain distribution with this module. 

Script Python 

In Figure below  is the output of the generated image generate program. On making this 

program there are several classes made by the author so that the program can run. 
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This program is designed using python programming  language using Visual  Studio Code 

text editor. This script  consists of  3 files, namely: 

1. An executable script runs programs. This script will use the avatar_generator 

function of the AvatarGenerator class and pass it an argument specifying how many 

loops should be used to create the desired avatar. 

2. The Layer class is used to access the layer subfolder's contents so that the 

AvatarGenerator class can later access it. This script has a random module that 

generates random numbers so that while the avatar generator is running, it creates 

avatars using random and distinct combinations (nothing is the same). 

3. Class AvatarGenerator to organize the layer composition order, a looping function 

to combine avatars or characters into a row, a function to produce a background, 

and a function to store photos in a directory are all included in this class. This class 

comes with a cushion library that can be used to show and edit photos. The OS 

module is then used to modify the current operating system. 

1.2.3 Data Augmentation 

Image augmentation is the process of modifying an image to generate variants of the same 

subject in order to give the model a wider range of training examples. Due to the impossibility of 

precisely capturing every possible real-world scenario, augmentation is essential. By increasing 

the image collection, we can incorporate additional challenging-to-discover real-world scenarios 

and increase the training data sample size. By expanding the training data to generalize to many 

scenarios, the model can acquire knowledge from a broader range of events. In this study, the 

author randomly changes an input image’s rotation, brightness, shear, horizontal flip, and scale. 
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This method forces the model to take into account how an image can appear in a range of scenarios, 

such as in the case of NFT image plagiarism. 

1.2.4 Derivative NFT 

 

NFT derivatives are NFT projects developed using intellectual property and artistic materials 

from already-existing projects. Derivative art NFTs frequently have titles that honor the original 

collections in addition to sharing a visual appearance with the original NFTs. The primary targets 

for derivatives are now well-known NFT collections like Bore Ape Yacht Club, CryptoPunks, and 

Creature World. Some derivatives are issued by other parties involved in derivatives initiative in 

addition to the officially issued NFT derivatives. Some of these derivatives initiatives can even 

combine two original NFTs. For instance, the Society of Derivative Apes (SODA) is a virtual NFT 

derivative that incorporates BAYC and Doodles features[12].   

The rise of NFT derivatives is a result of NFT usage spreading internationally. Generally 

speaking, the NFT community has differing views on derivatives efforts. Others see them as a 

compliment to the original collections they are based on, while some view them as uninspired 

ripoffs of already-existing initiatives. However, the production and selling of NFT derivatives has 

generated considerable controversy because some contend that doing so constitutes plagiarism or 

a violation of intellectual property rights. Additionally, the lack of transparency and elucidation 

regarding the ownership and validity of NFT derivatives may worry purchasers and collectors. 

Investors should conduct their own research, perform due diligence, and be aware of any potential 

dangers before investing in any NFT collection, including derivatives[12]. 

NFT images are essentially derivative because they share many traits with the original image. 

The broad definition of a derivative is when someone replicates an existing collection (often blue-

chip) and adds their own twist to it. A few examples of popular collections that provide excellent 
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targets for derivative collections include Bored Ape Yacht Club, CryptoPunks, and Creature 

World. Derivative works frequently have spin-off names that pay homage to the original collection 

in addition to having visually similar names.[12]. 

One could say that derivatives that are visible to the naked eye meet the requirements for an 

NFT. Figure 3.3 illustrates the similarity between the picture characters of BAYC and BASC. 

Both adopt an ape-like appearance and dimensions. The BASC image is a variant of the BAYC 

image, except the BASC image uses a gradient background rather than a solid background, 

includes additional accessories that the BAYC image lacks, and solely modifies the skin tone. 

There is no doubt that BASC is a descendant of BAYC. 

 

In the case of this project, the author makes 3 images with the same character so that they 

can be said as derivatives. The first is the "original" image where the image has a more complex 

color structure and what stands out the most is the shadow effect on the character. Then there is 

"derivative_1" where the image has a difference in terms of coloring of the character. The author 

made this character without any shadow effect on the character and changed the outline a bit to 

make it thinner, as well as changing the color of some of the accessories was also done by the 

author. Then in the 3rd image, namely "derivative_2", the author made the same image but added 

boldness to the outline and changed the color of some of the accessories on the character. If seen 

with the naked eye, someone will definitely judge that this image is plagiarism or derivative, 

therefore the author wants to prove whether a machine can distinguish this. 

 

1.2.5 Convolutional Neural Network Algorithm 

An image or image data processing-specific type of neural network architecture is called a 

convolutional neural network. Due to their capacity to distinguish local features in an image, such 
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as edges, angles, and certain shapes, which are then utilized to perform class predictions of the 

image, CNNs are particularly effective in pattern recognition tasks, such as image prediction. 

Convolutional Neural Networks (CNNs) are the most common type of neural network 

architecture used in the field of image processing and pattern recognition. In Figure above feature 

learning and classification are two important aspects of CNN. 

 

1. The process of extracting meaningful characteristics from input data, such as photography, 

is known as feature learning. CNN employs filters and features to extract key details from imagery 

as an input. Convolution, pooling, and activation functions continually apply these filters to the 

image, producing the features that are then processed by additional CNN layers. 

2. Classification Layer, the neurons in this layer, which is made up of numerous layers, are 

completely interconnected with the layers above and below. This layer gets input from the feature 

learning section's output layer, which is then processed on a flattening layer structure with the 

addition of multiple hidden layers that are fully connected to create output in the form of 

classification accuracy for each class. 

1.2.6 Convolution Layer 

A unique kind of linear operation called a convolutional layer exists in a Convolutional 

Neural Network (CNN) at the feature learning stage.   A neural network that uses convolution in 

place of a general matrix in at least one of its layers is known as a convolutional network.  One of 

the mathematical processes used in image processing is convolution.   In this process, feature maps 

of the input image are used to implement the output function. These inputs and outputs can be 

thought of as two valid arguments. 

Convolutions are defined for each integral function defined above, and can be used for   

purposes other than taking weighted averages. The s(t) function gives a single output that is feature 

maps,  the first argument is the input that is  x and  the second argument  w   is as the  kernel or 

filter. 
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 The image above is an  RGB (Red, Green, Blue) image layer measuring 32x32 pixels which 

is actually a  multidimensional array with a size  of  32x32x3 (3   is the number of channels).   For 

example,  the first layer  on the feature extraction  layer  is usually a  conv. layer with a size of 

5x5x3. 5 pixels long,  5 pixels high and thick or the number of 3 pieces according to the   channel 

of  the  image.  These three filters  will be shifted to all parts of the  image.  Each shift will be 

carried out a "dot"  operation between the  input and value of the filter  so as to produce an output  

or  commonly referred to  as an activation  map or feature map. 
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To calculate the dimensions of the feature map there is, there are several parts that need to 

be known, namely stride, filter of length or height, input of length or height, zero padding. A  

formula can be used as below: 

 

1.1.1.1.1.1.1.1.1 Formula to calculate The Dimension of The Feature Map 

  W = Input Length or Height 

  N = Filter Length or Height 

  P = Zero Padding 

  S = Stride 

Here are some important concepts related to convolution layers on CNN: 

1. Filter or kernel: A matrix (often 3x3 or 5x5) used to extract features from an image 

is known as a filter or kernel. The image will be repeatedly subjected to the filter 

with the chosen strain. 

2. Stride: The value of this parameter controls the amount by which the filter adjusts 

the input image during each convolution. A longer stride will provide less output 

and fewer distinguishable features. 

3. Padding: Before convolution, padding is the process of adding pixels to the input 

image's edges. The objective is to preserve the size of the image after convolution 

and prevent information loss at the image's edges. 
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4. Activation function: This mathematical formula is used to decide whether or not a 

feature will be activated. One of the most often utilized activation functions in the 

convolution layer is the ReLU (Rectified Linear Unit) function. Through the 

elimination of negative values and the maintenance of positive values, this function 

stimulates neurons in the CNN layer. 

1.2.7 Pooling Layer 

A layer of functions known as a pooling layer uses feature maps as input and processes them 

using different statistical operations dependent on the closest pixel value. The pooling layer in the 

CNN model is often added on a regular basis following multiple convolutional layers.  In the 

architecture stack of the CNN model, repeatedly inserting pooling layers between convolution 

layers can gradually reduce the output volume of feature maps, hence lowering the network's 

parameter and calculation requirements and controlling overfitting. When creating CNN models, 

it's crucial to select a variety of pooing layers because doing so can improve the model's 

performance. 

The pooling    layer works in each feature map stack and reduces its size.  The shape of the 

pooling layer generally uses a filter with a size of 2x2 which is applied with a step of 2 stride and 

operates on each slice of the input.   Here is an example image of a max-pooling operation: 

 

 

 

In the image above, a max pooling surgical illustration, a group of boxes to be picked for 

their maximum are located on the left side, with the colored red, green, yellow, and blue.  In order 

for the boxes to the right to display the procedure' outcomes. By using this method, it is guaranteed 

that the features will remain the same even when the image object is translated or shifted.  In 

general, the more information that is lost and the wider the pooling region, the lower the resolution 

of the final image will be. However, layer pooling can hasten training time and strengthen the 
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model's resistance to variations in image size and rotation by reducing spatial dimensionality. In 

CNN, layer pooling plays an important role in strengthening the model's ability to understand 

important features in the image and improving the accuracy and generalizability of the model. 

1.2.8 Fully Connected Layer 

In the pre-classification stage of CNN, the flatten layer is a step where the output of the 

convolution layer and pooling layer is transformed into a one-dimensional vector, which then 

serves as the input for the fully connected layer. Each feature obtained from the convolution and 

pooling layers is displayed in this method as a multi-dimensional tensor. However, these 

multidimensional tensors must be transformed into one-dimensional vectors or arrays in order to 

be able to integrate these features as inputs to a fully connected layer. Every component of a multi-

dimensional tensor that is flattened is effectively aligned or converted into a single component of 

a one-dimensional array. For example, if the output of a convolution layer is a tensor of size 

[batch_size, height, width, channels], then the flatten layer converts this tensor into a one-

dimensional array of sizes [batch_size, height * width * channels]. After the flatten layer, the 

output vector will be forwarded to the fully connected layer for further processing in the 

classification or regression process. In the fully connected layer, each neuron is connected to each 

neuron in the previous layer, thus allowing the model to learn more complex relationships between 

features that have been found in previous convoluted layers. 

 

The final layer of a convolutional neural network (CNN) design, the fully connected layer 

(FCL), is in charge of linking the output of the convolution and pooling layers to the output layer. 

Each neuron in FCL receives input from every cell in the preceding layer as it is made up of many 

neurons connecting to all of the neurons in the previous layer. Each neuron in the FCL receives 

the output from the preceding layer, which is the result of convolution and pooling, as its input. 

The output of each neuron in the FCL is generated using activation functions like ReLU, sigmoid, 
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or tanh, and each neuron has a distinct weight and bias. The output of all neurons in the FCL is 

then combined and processed to produce the final output. 

FCL is often used on image classification tasks, such as object recognition, where the output 

of the CNN must be categorized into a specific class. FCL can learn more complex patterns from 

previous output layers, thus improving the accuracy and performance of CNN models. 

1.2.9 Transfer Learning of Dense Net 201 Architecture 

Learning transfer is a method for helping current algorithms perform better with less data 

and in less time. Although this method has several advantages, there are some circumstances that 

need be taken into account in terms of learning transfer. Transfer learning can only be effective if 

the starting and target problems are sufficiently comparable for the first training to be applicable. 

In these circumstances, it is assumed that the source data and the target data are significantly 

dissimilar to one another and thus the negative transfer problem arises. The model might actually 

perform worse than if it hadn't been trained at all if the first round of training is too far off. Right 

now, there are still no clear standards on what types of training are sufficiently related, or how this 

should be measured. 

Transfer learning is the ability to retain knowledge gained from addressing one problem and 

apply it to a different one later on. With transfer learning, models are created utilizing prior 

knowledge that demonstrate greater effectiveness and learn more quickly with less training data. 

The best thing about transfer learning is that only a portion of the trained model needs to be learned 

in order to use it. Transfer learning allows us to do so while saving time. 

 

1.2.10 Hyperparameter Setting 

A total of 3000 photos will be divide into 80% training and 20% validation portions, with 

all images resized to a size of 50 by 50. To train the model using NFT images, we first collect a 

dataset of NFT images from the above open-access resources along with their associated metadata, 

including file size, format, and structure. Next, the images are pre-processed by resizing them to a 

fixed size of 50 by 50 and standardizing their pixel values. For the model architecture, the author 

used Dense Net architecture. The models are trained using the Adam optimizer with a learning rate 

of 0.001 and a batch size of 64 over 30 epochs, along with other hyperparameters mentioned in 

Table below. 

 

Hyperparameter DenseNet201 Architecture 
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In Activation ReLU 

Batch Size 64 

Learning Rate 0.001 

Training Data 80% 

Validation Data 20% 

Loss Function Categorical Cross Entropy 

Optimizer Adam 

Image Size (50, 50) 

Epoch 30 

 The hyperparameters must be set to optimal and equivalent values. In this study, we set all 

the models being compared to the same hyperparameters, as shown in Table above. ReLU 

activation was chosen because it is less computationally expensive and rectifies the vanishing 

gradient problem, which is better than other activation functions such as tanh and sigmoid. 

Furthermore, the default learning rate value of 0.001 was used in most Keras optimizers because 

it is recommended for beginners. Based on the insights from Face Net embeddings, the author 

selected a image size of (50, 50). This model was initially used for face clustering, verification, 

and identification, and provides greater precision with only 128 bytes per face. The batch size of 

64 was chosen because it is appropriate for the amount of data used in the study, and using a mini-

batch size that is a power of 2 is recommended. 

The author chose to use the Adam optimizer, as it is a well-known deep-learning training 

technique that uses exponentially weighted moving averages to manage the gradient’s momentum 

and the second moment, also known as leaky averaging. This optimizer tracks the relative 

prediction error of the loss function through a weighted average, making it more effective than the 

standard stochastic gradient descent (SGD) technique, which ignores the effects of outliers. 

Evaluation of the classification results of the intended architecture is performed in terms of 
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precision, recall, the F1-score, and classification accuracy. Among those parameters, precision is 

the proportion of samples with optimistic predictions concerning the total number of correct 

positive samples. The recall ratio of correctly predicted samples to the whole samples and the F1-

score are the precision and recall weight. Finally, classification accuracy is the total correct 

predictions to the total number of samples. 
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1.3 IMPLEMENTATION AND RESULTS 

1.3.1 Experiment Setup 

In this project, the author uses a computer with Intel i5 Gen12 specifications, 16GB RAM, 

Nvidia RTX 3060 GPU, and uses the Python3 programming language on Google Colab. With 

these specifications can support the author in working on this project. 

1.3.2 Implementation 

In this chapter explains the implementation and testing of projects development about 

Predicting Derivative NFT Using Convolutional Neural Network Algorithm. Below is the code of 

the Convolutional Neural Network algorithms used to obtain results from the project developed. 

 

 

The author's Colab notebook must first be mounted to the author's Google Drive account. 

The author must run the following code in order to accomplish this. The author will then be 

prompted to grant Colab access to their Google Drive account. When requested, input the 

permission code after adhering to the instructions. Once the Google Drive has been mounted 

successfully, the author can view their files from within their Colab notebook.. 

 

 

To understand an image dataset, the author first define the dataset directory into a variable. 

Then each available class or label can be known by calling os.listdir. 
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 To find out the number of files present, the author use the len() function in each label 

directory and sum them. To facilitate reading the data can also be visualized using the help of the 

matplotlib library. 

 

 Import the required library according to the program created by the author. Matplotlib, 

numpy, and tensorflow are the main libraries and packages used in the following programs are 

what they do: 

1. NumPy is a library for the Python programming language that adds support for 

sizable, multidimensional arrays and matrices as well as a substantial number of 

high-level mathematical functions to work with these arrays. 

2. Matplotlib, a charting package for Python and its extension for numerical 

mathematics. 

3. Tensorflow enables the creation of massively scalable neural networks. Tensorflow 

has aided researchers with their tasks. 
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 Setting the seed, image size, and batch size. The number of samples that pass through the 

neural network before the model parameters are updated is represented by the batch size. Each set 

of samples undergoes a complete forward propagation and a complete backward propagation. 

Resize the image to have less pixels so that processing would be simpler because there will be less 

data to process. Random functions that generate random or random values need a seed to be 

initialized. 

 

 Next is to prepare the data before later going into modeling. This setup includes splitting 

data into training and validation data. This data sharing is needed before it is later used to train the 

model created and calculate the accuracy of the model. 
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 After dividing the data, the image used as the dataset will also be applied image 

augmentation. This is applied based on the image data that has been displayed before. Image 

augmentation is done here using Random Flip, Random Rotation, Random Zoom and Rescaling 

layers on the image. 

 

 

Using the code above, a special callback class called myCallback is defined. The Keras API 

for TensorFlow uses this callback to track the status of training at each epoch. In particular, it 

evaluates the model's accuracy after each epoch and halts training if the accuracy approaches or 

exceeds 99%. At the conclusion of each epoch, a built-in callback method named on_epoch_end 

is invoked. The training metrics (logs) and the current epoch number are supplied as inputs inside 

of this procedure. 99% accuracy or more was attained by the model if the accuracy value in the 

logs dictionary (logs.get('accuracy')) is greater than 0.99%. In that case, the message "Akurasi 

mencapai 99%" is printed, and the attribute stop_training of the model is set to True. This will 

stop the training process, preventing any further epochs from being executed. 
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To facilitate easy learning transfer, Keras offers the Dense Net course. The DenseNet-201 

class with ImageNet weights was employed by the author. The author developed his base model 

by adding the intentionally manufactured data, and the author rescaled the data set in accordance 

with the Dense Net model that was used in feature extraction. The inventor of this model stopped 

the weights in non-trainable layers from changing by setting the trainable property of this model 

to False. Otherwise, the model's learnt information would be lost. The fully-connected layer at the 

top of the network was left out because the author only used this model for feature extraction; 

instead, the author provided the input shape and pooling. The author also added his own pooling 

and dense layers. 

 

 The code above trains a DenseNet201 model using the fit method from TensorFlow's Keras 

API. It specifies the training data, the number of steps per epoch, the number of epochs to train 
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for, the validation data, and a custom callback. The train_data is used to train the model in 30 

epochs, with 16 steps per epoch. After each epoch, the model's performance is evaluated on the 

valid_data. Additionally, a custom callback named myCallback is included, which stops the 

training if the accuracy reaches or exceeds 99%. The training history, including the loss and 

accuracy values for each epoch, is stored in the densenet_hist variable.. 

 

 

After everything is done with model training, the results obtained from model training are 

then evaluated using matplotlib where all training and validation results will be made graphs or 

flows that will show the accuracy and loss of functions. 
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The code above creates a confusion matrix to evaluate the performance of the trained 

DenseNet201 model. It first retrieves the true labels of a set of 100 data points by using the 

test_data generator, which is created with the ImageDataGenerator and points to the same 

directory as the training and validation data. The model's predictions are then obtained by applying 

the model to the test_data generator. The argmax function is used to convert the predicted 

probabilities into class labels. The confusion matrix is calculated using the true labels and predicted 

labels, and it represents the number of samples that were classified correctly and incorrectly for 

each class. Finally, the confusion matrix is visualized as a heatmap using the seaborn library, with 

the class labels shown on the x and y axes. 
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The last step of making this program is to test the model by uploading one of the images 

taken from the dataset and then the model that has been trained will predict whether the uploaded 

image is correct or not according to its respective class. From there the author can obtain prediction 

results whether appropriate or not with correct accuracy. 

1.3.3 Results 

In this chapter, the author will explain the results obtained from running the program. By 

using transfer learning with DensNet201 Model, the author can find out the performance of the 

model through derivative NFT image classification. 
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1.3.4 Model Custom Dense Net Architecture 

 

The DenseNet201-based transfer learning model's architecture and parameters are described 

in general in the model summary. A pre-trained DenseNet201 base model, an image data 

augmentation layer, a dropout layer, a flatten layer, and three dense layers are among the layers 

that make up the model. The model's input shape is set to (50, 50, 3), which represents RGB images 

of 50x50 pixels. A 1920-dimensional output is generated by the base DenseNet201 model, which 

has a total of 18,321,984 non-trainable parameters. By randomly changing a portion of input units 

to 0 during training, the dropout layer aids in preventing overfitting. The output of the base model 

is flattened by the flatten layer into a 1D tensor. Each of the subsequent dense layers' 64 units 

employs the ReLU activation function, while the final dense layer's 3 units classify data using 

softmax activation. The model has a total of 18,449,283 parameters, 127,299 of which can be 

learned, while the rest parameters come from the DenseNet201 base model that has already been 

trained. 
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1.3.5 Results of Model Accuracy 

 

1.1.1.1.1.1.1.1.1 Accuracy of DenseNet201 Model with 50x50 Target Size without 
Data Augmentation 

Next is to train the data of the images on the dataset into the model with the fit model. In 

performing a fit model used epoch = 30. Epoch means the number of times the network will see 

the entire data set. It can be seen from the experiment conducted by the author that the model used 

produces a fairly high accuracy value of 86.33%. By using this hyperparameter it took 29 second 

to reach 1 epoch. 

 

1.1.1.1.1.1.1.1.2 Accuracy of DenseNet201 Model with 50x50 Target Size using Data 
Augmentation 

In the second experiment the authors used the same hyperparameter but added augmentation 

data to increase the variance. The accuracy of the model reaches 91% and the validation reaches 

88%. This is quite good because the model is not overfitting. Getting to 1 epoch takes about 43 

seconds on this model. 
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1.1.1.1.1.1.1.1.3 Accuracy of DenseNet Model with 150x150 Target Size without Data 
Augmentation 

In the third experiment the authors used the same hyperparameter but changed the target size 

to 150x150 which was originally only 50x50, and without using data augmentation. In this 

experiment, very good accuracy was obtained until it touched the limit or Callback, namely 99% 

during training and 98 during validation. However, in this model it takes a relatively longer time 

to reach 1 epoch, which is around 202 seconds. In this experiment only 16 epochs are needed to 

get the highest accuracy. 
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1.1.1.1.1.1.1.1.4 Accuracy of DenseNet201 with 50x50 Targer Size With Data 
Augmentation and using Sparse Categorical Cross Entropy Loss Function 

In the fourth experiment the authors used the same hyperparameter but changed the target 

size to 50x50, and using data augmentation. This experiment using different loss function, by using 

sparse categorical cross entropy there is got a good accuracy. Getting to 1 epoch takes about 23 

seconds on this model. 

 

1.1.1.1.1.1.1.1.5 Accuracy of DenseNet201 with 50x50 Targer Size With Data 
Augmentation and using 100 epoch 

In the fifth experiment, the authors conducted 100 epoch training to prove whether the model 

was overfitting or not if it was not given a callback function. It can be seen that the accuracy of 

validation obtained is 93% and training is 94% with 22 seconds to complete 1 epoch. 
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1.3.6 Loss Function and Accuracy Charts 

 

1.1.1.1.1.1.1.1.6 Accuracy and Loss using 50x50 Target Size without Data 
Augmentation 

After generating the expected accuracy in the first experiment, the model is next assessed by 

showing graphs of the accuracy and loss functions using matplotlib. As can be seen in Figure 

above, the accuracy graph keeps growing and produces a high enough level of accuracy, while the 

loss function graph displays a decreasing flow, which indicates that prediction errors are also going 

down. As a result, the accuracy will keep growing and producing a high level of accuracy. Overall, 

despite the model's outstanding performance on the training set of data, the somewhat worse 

performance on the validation set of data and the widening gap between the training and validation 

accuracy raise concerns about the model's potential overfitting. 
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1.1.1.1.1.1.1.1.7 Accuracy and Loss using 50x50 Target Size using Data 
Augmentation 

In the second experiment, the authors used the same hyperparameter but added data 

augmentation to the dataset. It can be seen in Figure above that the graph has experienced a 

significant decrease in loss and does not have a large gap between training and validation accuracy. 
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1.1.1.1.1.1.1.1.8 Accuracy and Loss using 150x150 Target Size without Data 
Augmentation 

The author tries to utilize the same hyperparameter on the third experiment from Figure 

above, but without data augmentation, and also adjusts the target_size to 150x150. This experiment 

produced findings that were satisfactory. The model maintained a high level of accuracy 

throughout the training procedure, according to the reported training results. Over the epochs, the 

accuracy grew progressively until it reached 99% accuracy at epoch 16. This shows that the model 

has become highly accurate in classifying the photos in the dataset. The common consensus is that 

a model is operating well and producing correct predictions on both the training and validation 

datasets when it achieves an accuracy of 99%, which is regarded as being very good. It is crucial 

to remember that the performance of the model should not be judged exclusively on its accuracy. 

Other measures and considerations, such as the particular task, the make-up of the dataset, and the 

required level of performance, are significant. 
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1.1.1.1.1.1.1.1.9 Accuracy and Loss using 50x50 Target Size with Data 
Augmentation and using Sparse Categorical Cross Entropy 

In the fourth experiment, the authors used the same hyperparameter and added data 

augmentation to the dataset. Using sparse categorical cross entropy it can be seen in Figure above 

that the graph has experienced a significant decrease in loss but have a small gap than second 

experiment. 
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1.1.1.1.1.1.1.1.10 Accuracy and Loss using 50x50 Target Size with Data 
Augmentation with 100 epoch 

In the fifth experiment, the authors tried to add epoch to find out if the model was overfitting 

if it was not given a callback function. It can be seen that accuracy increases and loss decreases 

despite having some gaps between the train and test charts. 

1.4 CONFUSION MATRIX 

The confusion matrix provides insights into the performance of the model across different 

classes. It helps identify which classes are being misclassified and provides an overview of the 

model's overall accuracy and errors. 
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1.1.1.1.1.1.1.1.11 Plot Confusion Matrix Result on First Experiment 

The code above computes and visualizes the confusion matrix for the test dataset using a 

trained DenseNet model. The test dataset consists of 3000 images belonging to 3 classes. The 

confusion matrix is a square matrix that shows the counts of true positive, true negative, false 

positive, and false negative predictions for each class. In the first experiment Figure 4.25, the 

confusion matrix has a size of 3x3 because there are 3 classes. From the confusion matrix: 

1. derivative_1: There are 775 photos that have been successfully identified as 

derivative_1 (true positives), 189 images that have been incorrectly identified as 

derivative_2 (false positives), and 36 images that have been incorrectly identified 

as original (false positives). 

2. derivative_2: There were no misclassifications among the 996 photos of 

derivative_2 and they are all accurately identified as derivative_2 (true positives). 

3. original: 769 photos have been accurately identified as original (true positives), 

while 211 and 20 original images, respectively, have been misclassified as 

derivative_1 and derivative_2 (false positives). 
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1.1.1.1.1.1.1.1.12 Plot Confusion Matrix Result on Second Experiment 

In the second experiment Figure above, the confusion matrix also has a size of 3x3 because 

there are 3 classes. From the confusion matrix: 

1. derivative_1: There are 835 images correctly classified as derivative_1 (true 

positives), while 141 images of derivative_1 are misclassified as derivative_2 (false 

positives) and 24 images of derivative_1 are misclassified as original (false 

positives). 

2. derivative_2: All 995 images of derivative_2 are correctly classified as derivative_2 

(true positives), while 5 images of derivative_2 are misclassified as derivative_1 

(false positives) and with no misclassifications. 

3. original: There are 772 images correctly classified as original (true positives), while 

51 images of original are misclassified as derivative_1 (false positives) and 177 

images of original are misclassified as derivative_2 (false positives). 
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1.1.1.1.1.1.1.1.13 Plot Confusion Matrix Result on Third Experiment 

The given confusion matrix for the third experiment Figure above shows that the 

classification model performed flawlessly. Three classes are represented by the 3x3 matrix. The 

genuine labels are in each row, while the anticipated labels are in each column. In this instance, 

the matrix demonstrates that there were 1000 examples for each class, and they were all correctly 

categorized. No misclassifications were found in any of the classes. The final row also reveals that, 

while all other predictions were accurate, four examples from class 2 were incorrectly assigned to 

class 0. The fact that the vast majority of the predictions were correct shows that the model had an 

overall accuracy rate of 99.6%. The model performs well and is very accurate, making it a 

trustworthy classifier for the provided dataset. 
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1.1.1.1.1.1.1.1.14 Plot Confusion Matrix Result on Fourth Experiment 

The presented confusion matrix relates to a three-class multi-class classification issue: 

derivative_1 (class 0), derivative_2 (class 1), and original (class 2). Each row represents the true 

class, while each column represents the predicted class, and the matrix indicates the performance 

of the model. 

1. derivative_1: 884 were correctly identified as derivative_1, 99 were incorrectly 

categorized as derivative_2, and 17 examples were incorrectly categorized as 

original. Class Derivative_1 has an accuracy of 88.4% (884/1000). 

2. derivative_2: Of the 1000 instances of derivative_2, 991 were correctly identified 

as derivative_2, six as derivative_1, and three as original. Class Derivative_2 has a 

99.1% (991/1000) accuracy rate. 

3. original: Of the 1000 original cases, 753 were correctly identified as original, 67 as 

derivative_1, and 180 as derivative_2. The class original's accuracy is 75.3% 

(753/1000). 
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1.1.1.1.1.1.1.1.15 Plot Confusion Matrix Result on Fifth Experiment using 100 Epoch 

From the results of 100 epochs in the fifth experiment, a classification as shown in Figure 

above was obtained. The following is an explanation of the Confusion Matrix plot above: 

1. Class derivative_1 (class 0): The model successfully predicted 950 occurrences 

(true positives) out of 1000 instances that belonged to class derivative_1. However, 

it incorrectly labeled 21 instances of derivative_1 as original and 29 cases of 

derivative_1 as derivative_2 (false negatives). 

2. Class derivative_2 (class 1): The model accurately categorized 992 of the 1000 

cases that belonged to class derivative_2 (true positives). It incorrectly categorized 

6 instances of derivative_2 as derivative_1 (false negatives) and 2 instances of 

derivative_2 as original (false negatives). 

3. Original class (class 2): The model correctly predicted 873 of the 1000 occurrences 

that made up the original class (true positives). 51 original cases were incorrectly 

labeled as derivative_1 (false negatives), while 76 original instances were 

incorrectly labeled as derivative_2 (false negatives). 
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In the fifth experiment, it can be seen that the machine is able to classify quite well by using 

hyperparameters of 100 epochs and using categorical cross entropy. But it is still not good 

compared to using callbacks and using a larger target size as in the third experiment. 

 

Test Drive Model 

 

1.1.1.1.1.1.1.1.16 Test Drive Model 

The last step is to test the model that has been created using the image data used into a 

dataset. To predict the results of the image, the author must upload one of the images in the dataset 

used and then the model will begin to predict the image according to the label created or not. In 

the picture above, it can be seen that with the resulting accuracy that the predicted image is in 

accordance with the label. 

1.4.1 Discussion 

From the results of these studies there are several analyzes conducted by the author. in 

collecting datasets the author must make it himself, because there is no site that provides NFT 

image datasets in large quantities, and it is not possible to download NFT images one by one from 

the marketplace. This iteration of the project uses 30 epochs so the process doesn't take long. In 

30 epochs, the highest accuracy is 99% which stops at 16 epoch. By reducing the target size, it 

also affects the training process to make it faster. Data augmentation in the dataset is also very 

influential in this project to increase variations. This project focuses on classifying NFT derivative 

images using transfer learning with the DenseNet201 model. With this model it is proven that 

DensNet201 can classify NFT derivative images with fairly good accuracy. 
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1.5 CONCLUSION 

In the last chapter, conclude the answer submitted in the problem formulation. From the 

experiments that have been carried out by the author, it can be concluded that the performance of 

the Dense Net-201 architecture is suitable for use in this topic, which is about predicting NFT 

images with 3 labels used, namely original, derivative 1, and derivative 2. In addition to the 

architecture used, hyperparameters also determine the level of accuracy produced such as batch 

size, learning rate, epoch, and many more. In this experiment, the loss function Categorical Cross 

Entropy is said to be very suitable than Sparse Categorical Cross Entropy, so that it affects the 

accuracy produced because it uses 3 labels where this type of cross entropy requires labels to be 

encoded as categories. From the results of experiments that have been carried out by the author, to 

speed up the training process with small target sizes, it is recommended to use augmentation data 

for increase the accuracy. However, to get even better accuracy, a larger target size is very 

influential in increasing accuracy without having to add augmentation data. but by using a large 

target size it will take a relatively long time to pass 1 epoch. And from the results of the fifth 

experiment, using 100 epochs, it was proven that the engine is good enough to classify NFT 

derivative images but still has some gaps between the train graph and the test on loss and accuracy 

calculations. 

Next research if you want to develop a project with predicting algorithm ensure the 

architecture model and hyperparameters match the dataset used. Deep learning is all about 

experimentation. You can improve the performance of your model by using a different pre-

processing method or by transfer learning with a completely different model. You can also make 

major changes to your model by tampering with the hyperparameter tuning. 
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