

 PROXIES VOL.6 NO.1, TAHUN 2022 47

1 PREDICTING DERIVATIVE NFT IMAGES USING
CONVOLUTIONAL NEURAL NETWORK WITH THE

DENSENET201 MODEL

1Rhama Andyka, 2Yonathan Purbo Santosa
1,2Program Studi Teknik Informatika Fakultas Ilmu Komputer,

Universitas Katolik Soegijapranata
2yonathansantosa@unika.ac.id

ABSTRACT

Derivative NFTs are modified versions of the original NFTs that have been altered or

obtained through additional processing. This modification process may include changes in the

color, appearance, composition, or content of an existing digital asset. Penelitian ini bertujuan

untuk mengembangkan algoritma prediksi untuk mengklasifikasikan derivatif NFT (Non-Fungible

Token) menggunakan teknik deep learning. In this context, the developed algorithm uses the

DenseNet-201 architecture and involves steps such as data comprehension, data preparation,

image augmentation, and the use of callbacks to stop model training when it reaches the desired

level of accuracy. This study uses NFT-derived datasets collected by the researchers themselves,

because there is no source that provides a large number of NFT datasets. Through experiments

conducted, it is known that the use of DenseNet-201 architecture with a target size of 50x50 or

150x150 can produce a good level of accuracy, reaching 86-99%. The experimental results show

that the implemented DenseNet-201 model is capable of classifying NFT derivatives with a good

level of accuracy. The use of data augmentation and adjustment of certain hyperparameters also

affects the improvement of model accuracy. In addition, analysis and visualization of the results

were carried out using a confusion matrix to evaluate the performance of the model in classifying

each NFT derived class.

Keywords: Machine Learning, Convolution Neural Network, Transfer learning, DenseNet201

Architecture.

mailto:yonathansantosa@unika.ac.id

 PROXIES VOL.6 NO.1, TAHUN 2022 48

1.1 CHAPTER 1 INTRODUCTION

1.1.1 Background

With the advancement of technology, artworks are no longer in physical form but today there

are also digital forms. Starting from 3D models, illustrations, character drawings, and others -

others. Since the emergence of the Non-Fungible Token or commonly known as NFT in 2014[1],

it has now been able to transform the views of art collectors and digital artists to develop it wider.

Basically, NFT is a digital artwork that is printed on the blockchain network to give the identity

or label of the encrypted work that the work is owned by someone and cannot be counterfeited.

Some of the NFT images on the marketplace usually have their own avatars and art styles, but

many also have some communities that mimic the avatar or are known as NFT derivatives so that

they can spoil the collector as well as harm NFT itself. This is because people tend to prefer to

imitate existing images so that their images are easier to highlight from the collector. In this project,

the authors discuss how to detect NFT derivatives using Convolutional Neural Network (CNN).

In creating this NFT derivative detection program, algorithms and datasets are needed.

Convolutional Neural Network with transfer learning DenseNet201 model is an algorithm that can

solve this problem. CNN is a type of simulated neural network designed to process image data

efficiently. CNN uses convolutionary filters to detect important features in the image and then use

them to make predictions. The data set used by the author is 3000 NFT images that have been

made by themselves. The 3000 images are divided into 3 types, each containing 1000 images that

will be inserted into the system repeatedly to get accurate information and get the maximum

prediction.

Thus, using Convolutional Neural Network (CNN) with transfer learning DenseNet201

model, the authors could predict NFT images with high accuracy. Using DenseNet201 model, the

publisher can also find out which parameters are suitable to produce predictions with high

accuracy. The success rate of the algorithm used will be described in more detail in chapter 3.

1.1.2 Problem Formulation

From this background, the author can formulate problems that will be answered in the

research process and discuss in the final part, which questions will be discussed as follows:

1. How does DenseNet201 perform in predicting derivative NFT images?

2. What hyperparameter and learning algorithm is suitable for solving prediction

derivative NFT image on this project?

1.1.3 Scope

There are also limitations of problems that are necessary in the creation of this program. So

as not to go beyond the objectives of this project, among them are:

 PROXIES VOL.6 NO.1, TAHUN 2022 49

1. Uses the NFT image type with a total of 3000 images from the author with a size

of 480x480 pixels as a dataset for the prediction process.

2. On this project focused on NFT derivative prediction using DenseNet201.

1.1.4 Objective

To classify an image, the human eye can immediately judge whether the image has

something in common or not, imitating other images or not. The purpose of making this NFT

derivative prediction program is in addition to knowing a NFT said derivative or not also to know

how DenseNet201 model works in the process of predicting NFT images.

1.1.5 Chapter 2 Literature Study

In the preparation of this project there are also several journals that the author uses as

references. Since no one has yet researched about the prediction of NFT images using CNN then

with the presence of several of these journals, the author can explain and analyze how CNN works

in the image predictions of projects already made by several sources so that this project to be made

has the same scope and also to avoid plagiarism. Some of these journals will be described in

narrative form, among them:

Norman Meuschke[2], this book discusses about how to introduce an image-based

plagiarism detection approach that adapts itself to forms of image similarity found in academic

work. The approach is adaptable because it includes techniques for analyzing heterogeneous image

features, employs analysis techniques only when they are appropriate for the input image, employs

a flexible method for identifying suspicious image similarities, and makes it simple to incorporate

new analysis techniques in the future. The research intends to build an effective detection strategy

capable of recognizing a wider subset of potentially suspicious image similarities and to derive

requirements for the approach by looking at photographs in the VroniPlag collection. The AlexNet

design is used in the deep convolutional neural network (CNN) used in this study. It has three

completely linked layers, a softmax output layer, and five convolutional layers. The CNN is trained

using the Caffe framework, an open-source deep learning system developed by the Berkeley

Vision and Learning Center. The Berkeley Vision and Learning Center's open-source deep

learning Caffe framework is used to train the CNN. This study uses the stochastic gradient descent

(SGD) optimizer, a well-liked optimization technique for deep neural network training. The SGD

optimizer modifies the network's weights in the direction of the loss function's negative gradient

with respect to the weights. In this project, the learning rate—which determines the step size of

the weight updates—is set to 0.01. A total of 50,000 iterations and a batch size of 128 are used to

train the CNN. The training data is augmented by randomly cropping and flipping the images to

increase the size of the training set and reduce overfitting. The CNN achieves an accuracy of 92%

for photographs and 100% for bar charts, as manually checked by the authors. The training data in

this project consists of images that are labeled according to their suitability for being analyzed

using different analysis methods. The images are extracted from a set of 196 academic works

containing alleged instances of plagiarism, which is the VroniPlag collection. The images are

 PROXIES VOL.6 NO.1, TAHUN 2022 50

classified into three categories: photographs, bar charts, and other image types. The CNN is trained

using the Caffe framework, which is an open-source deep learning framework developed by the

Berkeley Vision and Learning Center. The training data is augmented by randomly cropping and

flipping the images to increase the size of the training set and reduce overfitting. The CNN is

trained using a batch size of 128 and a total of 50,000 iterations. The learning rate, which controls

the step size of the weight updates, is set to 0.01. The CNN achieves an accuracy of 92% for

photographs and 100% for bar charts, as manually checked by the authors.

Praveen Krishnan[3], this book discusses about how to develop a system for matching

handwritten document images. The system employs a convolutional neural network (CNN) named

HWNet, which is trained using a multinomial logistic regression loss function on a dataset of

handwritten words (iiit-hws). The HWNet design consists of two fully connected layers with 2048

neurons each, five convolutional layers with 64, 128, 256, 512, and 512 square filters, and a final

fully connected layer with a dimension equal to the number of classes (10K in this example). After

each weight layer until the last one, rectified linear units are used as the non-linear activation units,

and max pooling is utilized. This is followed by the first, second, and fourth convolutional layers.

The system also uses transfer learning from synthetic domain (iiit-hws) to real world setting using

popular handwritten labeled corpora such as iam and gw. The training data is rendered using 100

randomly sampled fonts with varying kerning level, stroke width, and mean foreground and

background pixel distributions. The system also performs Gaussian filtering to smooth the final

rendered image and learns a case insensitive model for each word category by performing three

types of rendering: all letters capitalized, all letters lower, and only the first letter in caps. The

purpose of the project is to enhance and improve the performance of word spotting in the

handwritten domain, which plays an important role in matching similar documents. The results of

this project show that the proposed HW-DocSim system, which uses a combination of CNN-based

feature extraction and a matching algorithm with locality constraints, outperforms existing state-

of-the-art methods for detecting plagiarism in handwritten documents. The system achieves an

nDCG score of 0.8569 and an AUC of 0.9465 on the HW-DocSim dataset, which contains 1000

handwritten pages from more than 100 students. The system also performs well on the HW-1K

dataset, which contains nearly 1K handwritten pages from more than 100 students. The authors

conclude that the proposed system can be used as an effective tool for detecting plagiarism in

handwritten documents, which is an important task in many fields such as education, law, and

journalism. They also suggest that future work can focus on improving the system's performance

on documents with graphics and mathematical expressions.

Srikar Appalaraju[4], this book discusses about how to develop a content-based image

similarity system using deep learning models. The project aims to explore effective and faster ways

to train such models using curriculum learning. The dataset used in this project is from the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012. The project uses a custom

multi-scale CNN architecture, where three different CNNs are employed instead of using one CNN

and sharing lower layers. The CNNs are trained using a curriculum learning methodology, which

introduces easier training examples first and gradually increases the difficulty level of the

 PROXIES VOL.6 NO.1, TAHUN 2022 51

examples. The CNNs are designed using a contrastive loss function, and the models are evaluated

in terms of accuracy. The results of this project show that the proposed content-based image

similarity system using deep learning models with curriculum learning and a custom multi-scale

CNN architecture outperforms the baseline model (pre-trained VGG16 CNN) in terms of accuracy.

The joint embedding from all three CNNs has a 4096 embedding, and the effect of embedding

dimension on the final performance was also studied. The project found that for shallower CNN

architectures, 512 and 1024 embedding space were sufficient, while for deep CNN, 4096

embedding was used. The project concludes that curriculum learning is an effective and faster way

to train deep learning models for content-based image similarity. The custom multi-scale CNN

architecture and the use of a contrastive loss function also contribute to the improved performance

of the proposed system. The project also highlights the importance of detecting and preventing

model overfitting, testing with a clean test set, and debugging to better understand the mistakes

the model is making.

Eman Al-Thwaib[5], this book discusses about how to develop an Arabic plagiarism

detection system and to create a corpus dedicated to plagiarism detection that is authentic, big,

versatile, and richly annotated. The JUPlag corpus was designed to compile academic texts for the

purpose of training and testing the Arabic plagiarism detection system that is to be developed. The

corpus was also intended to function as a test bed for the evaluation of plagiarism detection

techniques. The dataset of this project is the JUPlag corpus, which is a collection of academic texts

compiled from 2,312 dissertations defended by postgraduate students at the University of Jordan

between 2001 and 2016. The corpus was designed to be used for training and testing an Arabic

plagiarism detection system and as a test bed for evaluating plagiarism detection techniques. The

JUPlag corpus was used to train and test a convolutional neural network (CNN) for Arabic

plagiarism detection. The CNN was trained on a subset of the corpus and tested on a separate

subset. The CNN architecture consisted of three convolutional layers, each followed by a max-

pooling layer, and two fully connected layers. The input to the CNN was a sequence of word

embeddings, which were learned during training. The CNN was trained using the Adam optimizer

and cross-entropy loss function. The results showed that the CNN was able to achieve high

accuracy in detecting plagiarism in Arabic texts. The best performing CNN model achieved an

accuracy of 98.5% on the test set.

Eshwar[6], this project discusses about similar fashion apparel detection and classification

using computer vision techniques. The dataset used in this project is collected from the e-

commerce website Myntra, and it consists of 5093 images ranging over 5 classes. The CNN is

used as an efficient technique for recognizing objects in images or videos. Transfer learning is

employed to generate bottleneck values using the weights from the previous pre-trained layers and

the images. The final layer of the CNN is trained to identify new classes. The architecture of the

CNN used in this project is the GoogLeNet architecture, which is a 22 layer deep neural network

initially trained on the ImageNet dataset. The final layer of the Inception v3 GoogLeNet model is

removed and a new final layer is trained to classify the apparel dataset. The training data in this

project is divided into a training set and a testing set containing 80% and 20% of the total number

 PROXIES VOL.6 NO.1, TAHUN 2022 52

of images respectively. The result of this project is a system that can accurately classify different

types of apparel with high accuracy and suggest similar apparel for a query image belonging to the

training set.

Azahro Choirunnisa[7], discusses the prediction of cat races using CNN with the

EfficientNet-B0 architecture. The background of this project is that the number of native cat breeds

is only 1% compared to mixed-race cats, so a cat prediction system is needed to identify cat types.

With the various types of cats, there are also several images that have patterns and the similar

posture. Therefore with this project the author wants to make a cat image classifier program based

on race. The method used in this project is CNN using the EfficientNet-B0 architecture and

comparing the Adam and RMSProp optimizers. The dataset obtained for this project comes from

kaggle and google images as many as 2700 images containing 9 different cat breeds. 2160 training

data, 540 validation data and 180 test data. The training data is pre-processed using a Gaussian

blur filter and then enters the augmentation process to enrich the variations of the training data.

Trials on this project were carried out in 3 scenarios, namely the first to compare if using a model

with data pre-processing and without pre-processing, then to compare the optimizer Adam and

RMSProp with a learning rate of 0.001 then the third with a learning rate of 0.0001. The results of

this prediction produce the highest accuracy of 98% using the Adam and RMSProp optimizer with

a learning rate of 0.001 but overfitting still occurs. the most optimal model gets 95% accuracy and

91% validation accuracy using RMSProp with a learning rate of 0.0001 and using data pre-

processing.

Hendry Fonda[8], discusses the prediction of Riau batik using convolutional neural network.

with the existence of various and even similar batik motifs, therefore a classification using CNN

is needed in this project. Riau Batik is known since the 18th century and was used by royal nobles.

Riau Batik is made using stamps mixed with dyes then printed on the fabric. The fabric used is

usually silk. The background of this project is that, compared to Javanese batik, Riau batik is very

slow to be accepted by the community. In this project, CNN will conduct training and testing on

Riau batik so that a collection of batik models that have been classified based on the characteristics

of Riau batik can be determined so that images can be determined which are Riau batik and which

are not Riau batik. This project uses tensor flow with a training process totaling 168 images with

68 images in the form of Riau batik and 100 non-Riau batik images. Iteration using 30 epochs

obtained an accuracy value from the data above is 65% with loss values of 2.5% and 2.1%.

Predictions using CNN produce riau batik instead of riau batik with 65% accuracy. The accuracy

of 65% is due to basically many of the same motifs between Riau batik and other batik with the

difference lies in the color of the cerap on Riau batik.

Song A[9], This paper discusses a new fine-grained face recognition method for similar face

recognition using the attention mechanism which combines the Internal Features and External

Features. The authors also show how a largescale similar face dataset can be assembled by a

combination of automation and human in the loop, and divide the dataset into five grades according

to different degrees of similarity. The proposed method improves the true positive rate and

 PROXIES VOL.6 NO.1, TAHUN 2022 53

recognition accuracy rate for the LFW and CASIA-WebFace database, as well as the similar face

dataset (SFD). The paper also introduces the IE-CNN model, which enhances the internal and

external features of the face, and proposes a step-by-step training method to train the model. In

this project, a face feature enhancement model called IE-CNN based on deep CNN was proposed.

The IE-CNN model enhances the internal and external features of the face. The model uses a

bottom-up top-down structure for the internal design of IE-CNN, which mimics the fast

feedforward and feedback attention process. A five-way parallel structure is adopted for the five

local feature maps, and each branch parameter is not shared. The model also uses a step-by-step

training method to train the model. The experimental results show that the proposed method

improves the true positive rate and recognition accuracy rate for the LFW and CASIA-WebFace

database, as well as the similar face dataset. The proposed method in this project improves the true

positive rate and recognition accuracy rate for the LFW and CASIA-WebFace database, as well as

the similar face dataset (SFD). The experimental results show that the proposed IE-CNN model

enhances the internal and external features of the face, and the step-by-step training method to

train the model is effective. The fusion of complementary features in the IE-CNN model was

successful, and the proposed method performed well with five grades of similarity. The recognition

accuracy rate improved by 35.84% and the true positive rate improved 15.84% for grade I, and as

the picture similarity in the dataset decreases from II to V, the recognition accuracy rate improved

by 18.80 – 28.44%.

Xie T[10], this book discusses about visual robot relocalization based on multi-task and

image-similarity strategy. The authors found that convnet representations trained on classification

problems generalize well to other tasks. The propose is, a multi-task CNN for robot relocalization,

which can simultaneously perform pose regression and scene recognition. Scene recognition

determines whether the input image belongs to the current scene in which the robot is located, not

only reducing the error of relocalization but also making understand with what confidence it can

trust the prediction. Meanwhile, the authors found that when there is a large visual difference

between testing images and training images, the pose precision becomes low. Based on this, the

authors present the dual-level image-similarity strategy (DLISS), which consists of two levels:

initial level and iteration-level. The initial level performs feature vector clustering in the training

set and feature vector acquisition in testing images. The iteration level, namely, the PSO-based

image-block selection algorithm, can select the testing images which are the most similar to

training images based on the initial level, enabling us to gain higher pose accuracy in testing set.

The method considers both the accuracy and the robustness of relocalization, and it can operate

indoors and outdoors in real time, taking at most 27 ms per frame to compute. Finally, by used the

Microsoft 7Scenes dataset and the Cambridge Landmarks dataset to evaluate our method. It can

obtain approximately 0.33 m and 7.51◦ accuracy on 7Scenes dataset, and get approximately 1.44

m and 4.83◦ accuracy on the Cambridge Landmarks dataset. Compared with PoseNet, our CNN

reduced the average positional error by 25% and the average angular error by 27.79% on 7Scenes

dataset, and reduced the average positional error by 40% and the average angular error by 28.55%

on the Cambridge Landmarks dataset. We show that our multi-task CNN can localize from high-

 PROXIES VOL.6 NO.1, TAHUN 2022 54

level features and is robust to images which are not in the current scene. Furthermore, we show

that our multi-task CNN gets higher accuracy of relocalization by using testing images obtained

by DLISS.

Kassim[11], this paper discusses an attribute-based query & retrieval system designed for

fashion products. This system addresses the problem of carrying out fashion searches by the query

image and attribute manipulation, e.g. replacing long sleeve attribute of a dress to sleeveless. The

authors present the attributes in two groups: (1) general attributes (category, gender etc.) and (2)

special attributes (sleeve length, collar etc.).. To facilitate more specific similarity learning,

clothing items are represented by their structural subcomponents or ”parts”. The parts are

estimated using an unsupervised segmentation method and used inside the proposed Convolutional

Neural Network (CNN) as an attention mechanism. Meaning, different parts are connected to the

special attributes, e.g. sleeve part is connected with sleeve length attribute. With this mechanism,

part-based triplet ranking constraint is applied to learn similarity of each special attribute

independently from one another in a single network. In the end, the well-defined features are used

to conduct the fashion search. Additionally, an adaptive relevance feedback module is used to

personalize the fashion search process with the feature descriptions. For the experiments, a new

dataset is constructed containing 101,021 images which consist of pure clothing items. Besides

achieving decent retrieval results in our dataset, the experiments show that proposed technique

outperforms different baselines and is able to adapt towards user’s requests. CNN’s proved

themselves to be very useful in both image recognition and retrieval problems. The authors adopt

the well-known CNN model AlexNet. The proposed method achieves the best performance again

with 53.1% top-20 retrieval accuracy. The second best performing method is AMNET [28] and

gives 45.8% top20 retrieval accuracy. Removing the part extraction from the network decreases

top-20 retrieval accuracy by around 7.5% which is a huge deal. AMNET and the method with part

extraction perform quite similar to each other. If the authors were to remove both part extraction

and the ranking loss would result in 40.1% top-20 retrieval accuracy which is better than directly

using the classic method as it gives 33.2% top-20 retrieval accuracy.

1.2 CHAPTER 3 RESEARCH METHODOLOGY

This chapter describes in detail the steps taken on this project until later in the end find results

that match what is done. This research stage discusses the workings of the system developed in

this project. Here are some steps to take find the right and correct results.

1.2.1 Research Process

In conducting this research, the author needs knowledge first to make a project, especially

knowledge about Convolutional Neural Network (CNN) and about Generative NFT. So by

knowing these two things, researchers can continue research aimed at predicting whether the NFT

image is an NFT derivative.

In this project, the processes carried out are:

1. Formulate background, objectives, scope, and problem formulation.

 PROXIES VOL.6 NO.1, TAHUN 2022 55

2. Research articles or journals related to the project carried out.

3. Create datasets for training and testing, study the algorithms that have been used,

and learn the best parameters to use.

Implementation and analysis of the results that have been carried out and then provide

conclusions.

1.2.2 Collecting Datasets

To obtain the dataset, authors need thousands of NFT images for training and testing

processes. From that, the author created an image generator program that was able to produce

thousands of combinations of a series of layers of images created by the author. The writer creates

3 variants of avatars, each of which has a total of 1000 images and will be labeled or named for

grouping. With this generator, the writer gets 3000 images as a dataset. Here are the steps – steps

to generate thousands of images:

Drawing Characters

The first step is for the writer to draw a character with separate layers as in Figure 3.1. Like

the body image drawn first, then the next layer is a picture of clothes with a position that has been

determined by the author, then the next layer is the mouth, eyes, hair and accessories. In this step,

the author uses illustration software, namely Clip Studio Paint with a canvas size of 480x480

pixels.

Counting the Number of Combinations

The image of one avatar consists of 6 layers including, the character's body, outfit, eyes,

mouth, and accessories. Each part has several variants, namely the body consisting of 9 variants,

outfit 6, mouth 7, eyes 7, hair 7, and accessories 4. With this variant, it will produce 74088 unique

avatar combinations because one with another is different from the formula 9 x 6 x 7 x 7 x 7 x 4.

The more variants of each category, the more unique the combination will be.

 PROXIES VOL.6 NO.1, TAHUN 2022 56

Layer Grouping

After creating a series of layers, each part must be stored in the images folder consisting of

sub folders 0_body, 1_outfit, 2_eyes, 3_mouth, 4_hair, and 5_accessories folders in PNG format

that have a transparent background. The function of saving images in PNG format is because the

format has an alpha channel which means it can control the transparency or opacity of colors. The

value can be represented as a real value, a percentage, or an integer.

Library dan Module

In building this generator there are also several libraries needed so that the program can run

as expected. Some libraries include:

1. Pillow, PIL, or the Python Image Library, is the first library that gave Python the

ability to work with images. PNG, TIFF, and BMP are just a few of the prominent

file types that Pillow supports. Python and Pillow both offer additional decoder

libraries if needed. masking, filtering, enhancing, adding text, pixel-by-pixel

manipulation, and other types of modification. The first step in utilizing the pillow

library is installing it using a virtual environment by entering pip install pillow.

You can run this library by typing from PIL.

2. The Python programming language offers the OS module as a module to access

operating system functions. Users can access files, folders, and other data kept on

the operating system via this module. Additionally, this module enables users to

retrieve details about the system's active processes and execute the shell from

Python.

3. Random, or the random module in Python, is a module that offers methods and

functions for generating random numbers. This module can be used for many

different things, like generating random numbers for simulations or games and

establishing strong passwords. Additionally, this module offers a function for

selecting things at random from a list or order. So you can also produce random

integers with a certain distribution with this module.

Script Python

In Figure below is the output of the generated image generate program. On making this

program there are several classes made by the author so that the program can run.

 PROXIES VOL.6 NO.1, TAHUN 2022 57

This program is designed using python programming language using Visual Studio Code

text editor. This script consists of 3 files, namely:

1. An executable script runs programs. This script will use the avatar_generator

function of the AvatarGenerator class and pass it an argument specifying how many

loops should be used to create the desired avatar.

2. The Layer class is used to access the layer subfolder's contents so that the

AvatarGenerator class can later access it. This script has a random module that

generates random numbers so that while the avatar generator is running, it creates

avatars using random and distinct combinations (nothing is the same).

3. Class AvatarGenerator to organize the layer composition order, a looping function

to combine avatars or characters into a row, a function to produce a background,

and a function to store photos in a directory are all included in this class. This class

comes with a cushion library that can be used to show and edit photos. The OS

module is then used to modify the current operating system.

1.2.3 Data Augmentation

Image augmentation is the process of modifying an image to generate variants of the same

subject in order to give the model a wider range of training examples. Due to the impossibility of

precisely capturing every possible real-world scenario, augmentation is essential. By increasing

the image collection, we can incorporate additional challenging-to-discover real-world scenarios

and increase the training data sample size. By expanding the training data to generalize to many

scenarios, the model can acquire knowledge from a broader range of events. In this study, the

author randomly changes an input image’s rotation, brightness, shear, horizontal flip, and scale.

 PROXIES VOL.6 NO.1, TAHUN 2022 58

This method forces the model to take into account how an image can appear in a range of scenarios,

such as in the case of NFT image plagiarism.

1.2.4 Derivative NFT

NFT derivatives are NFT projects developed using intellectual property and artistic materials

from already-existing projects. Derivative art NFTs frequently have titles that honor the original

collections in addition to sharing a visual appearance with the original NFTs. The primary targets

for derivatives are now well-known NFT collections like Bore Ape Yacht Club, CryptoPunks, and

Creature World. Some derivatives are issued by other parties involved in derivatives initiative in

addition to the officially issued NFT derivatives. Some of these derivatives initiatives can even

combine two original NFTs. For instance, the Society of Derivative Apes (SODA) is a virtual NFT

derivative that incorporates BAYC and Doodles features[12].

The rise of NFT derivatives is a result of NFT usage spreading internationally. Generally

speaking, the NFT community has differing views on derivatives efforts. Others see them as a

compliment to the original collections they are based on, while some view them as uninspired

ripoffs of already-existing initiatives. However, the production and selling of NFT derivatives has

generated considerable controversy because some contend that doing so constitutes plagiarism or

a violation of intellectual property rights. Additionally, the lack of transparency and elucidation

regarding the ownership and validity of NFT derivatives may worry purchasers and collectors.

Investors should conduct their own research, perform due diligence, and be aware of any potential

dangers before investing in any NFT collection, including derivatives[12].

NFT images are essentially derivative because they share many traits with the original image.

The broad definition of a derivative is when someone replicates an existing collection (often blue-

chip) and adds their own twist to it. A few examples of popular collections that provide excellent

 PROXIES VOL.6 NO.1, TAHUN 2022 59

targets for derivative collections include Bored Ape Yacht Club, CryptoPunks, and Creature

World. Derivative works frequently have spin-off names that pay homage to the original collection

in addition to having visually similar names.[12].

One could say that derivatives that are visible to the naked eye meet the requirements for an

NFT. Figure 3.3 illustrates the similarity between the picture characters of BAYC and BASC.

Both adopt an ape-like appearance and dimensions. The BASC image is a variant of the BAYC

image, except the BASC image uses a gradient background rather than a solid background,

includes additional accessories that the BAYC image lacks, and solely modifies the skin tone.

There is no doubt that BASC is a descendant of BAYC.

In the case of this project, the author makes 3 images with the same character so that they

can be said as derivatives. The first is the "original" image where the image has a more complex

color structure and what stands out the most is the shadow effect on the character. Then there is

"derivative_1" where the image has a difference in terms of coloring of the character. The author

made this character without any shadow effect on the character and changed the outline a bit to

make it thinner, as well as changing the color of some of the accessories was also done by the

author. Then in the 3rd image, namely "derivative_2", the author made the same image but added

boldness to the outline and changed the color of some of the accessories on the character. If seen

with the naked eye, someone will definitely judge that this image is plagiarism or derivative,

therefore the author wants to prove whether a machine can distinguish this.

1.2.5 Convolutional Neural Network Algorithm

An image or image data processing-specific type of neural network architecture is called a

convolutional neural network. Due to their capacity to distinguish local features in an image, such

 PROXIES VOL.6 NO.1, TAHUN 2022 60

as edges, angles, and certain shapes, which are then utilized to perform class predictions of the

image, CNNs are particularly effective in pattern recognition tasks, such as image prediction.

Convolutional Neural Networks (CNNs) are the most common type of neural network

architecture used in the field of image processing and pattern recognition. In Figure above feature

learning and classification are two important aspects of CNN.

1. The process of extracting meaningful characteristics from input data, such as photography,

is known as feature learning. CNN employs filters and features to extract key details from imagery

as an input. Convolution, pooling, and activation functions continually apply these filters to the

image, producing the features that are then processed by additional CNN layers.

2. Classification Layer, the neurons in this layer, which is made up of numerous layers, are

completely interconnected with the layers above and below. This layer gets input from the feature

learning section's output layer, which is then processed on a flattening layer structure with the

addition of multiple hidden layers that are fully connected to create output in the form of

classification accuracy for each class.

1.2.6 Convolution Layer

A unique kind of linear operation called a convolutional layer exists in a Convolutional

Neural Network (CNN) at the feature learning stage. A neural network that uses convolution in

place of a general matrix in at least one of its layers is known as a convolutional network. One of

the mathematical processes used in image processing is convolution. In this process, feature maps

of the input image are used to implement the output function. These inputs and outputs can be

thought of as two valid arguments.

Convolutions are defined for each integral function defined above, and can be used for

purposes other than taking weighted averages. The s(t) function gives a single output that is feature

maps, the first argument is the input that is x and the second argument w is as the kernel or

filter.

 PROXIES VOL.6 NO.1, TAHUN 2022 61

 The image above is an RGB (Red, Green, Blue) image layer measuring 32x32 pixels which

is actually a multidimensional array with a size of 32x32x3 (3 is the number of channels). For

example, the first layer on the feature extraction layer is usually a conv. layer with a size of

5x5x3. 5 pixels long, 5 pixels high and thick or the number of 3 pieces according to the channel

of the image. These three filters will be shifted to all parts of the image. Each shift will be

carried out a "dot" operation between the input and value of the filter so as to produce an output

or commonly referred to as an activation map or feature map.

 PROXIES VOL.6 NO.1, TAHUN 2022 62

To calculate the dimensions of the feature map there is, there are several parts that need to

be known, namely stride, filter of length or height, input of length or height, zero padding. A

formula can be used as below:

1.1.1.1.1.1.1.1.1 Formula to calculate The Dimension of The Feature Map

 W = Input Length or Height

 N = Filter Length or Height

 P = Zero Padding

 S = Stride

Here are some important concepts related to convolution layers on CNN:

1. Filter or kernel: A matrix (often 3x3 or 5x5) used to extract features from an image

is known as a filter or kernel. The image will be repeatedly subjected to the filter

with the chosen strain.

2. Stride: The value of this parameter controls the amount by which the filter adjusts

the input image during each convolution. A longer stride will provide less output

and fewer distinguishable features.

3. Padding: Before convolution, padding is the process of adding pixels to the input

image's edges. The objective is to preserve the size of the image after convolution

and prevent information loss at the image's edges.

 PROXIES VOL.6 NO.1, TAHUN 2022 63

4. Activation function: This mathematical formula is used to decide whether or not a

feature will be activated. One of the most often utilized activation functions in the

convolution layer is the ReLU (Rectified Linear Unit) function. Through the

elimination of negative values and the maintenance of positive values, this function

stimulates neurons in the CNN layer.

1.2.7 Pooling Layer

A layer of functions known as a pooling layer uses feature maps as input and processes them

using different statistical operations dependent on the closest pixel value. The pooling layer in the

CNN model is often added on a regular basis following multiple convolutional layers. In the

architecture stack of the CNN model, repeatedly inserting pooling layers between convolution

layers can gradually reduce the output volume of feature maps, hence lowering the network's

parameter and calculation requirements and controlling overfitting. When creating CNN models,

it's crucial to select a variety of pooing layers because doing so can improve the model's

performance.

The pooling layer works in each feature map stack and reduces its size. The shape of the

pooling layer generally uses a filter with a size of 2x2 which is applied with a step of 2 stride and

operates on each slice of the input. Here is an example image of a max-pooling operation:

In the image above, a max pooling surgical illustration, a group of boxes to be picked for

their maximum are located on the left side, with the colored red, green, yellow, and blue. In order

for the boxes to the right to display the procedure' outcomes. By using this method, it is guaranteed

that the features will remain the same even when the image object is translated or shifted. In

general, the more information that is lost and the wider the pooling region, the lower the resolution

of the final image will be. However, layer pooling can hasten training time and strengthen the

 PROXIES VOL.6 NO.1, TAHUN 2022 64

model's resistance to variations in image size and rotation by reducing spatial dimensionality. In

CNN, layer pooling plays an important role in strengthening the model's ability to understand

important features in the image and improving the accuracy and generalizability of the model.

1.2.8 Fully Connected Layer

In the pre-classification stage of CNN, the flatten layer is a step where the output of the

convolution layer and pooling layer is transformed into a one-dimensional vector, which then

serves as the input for the fully connected layer. Each feature obtained from the convolution and

pooling layers is displayed in this method as a multi-dimensional tensor. However, these

multidimensional tensors must be transformed into one-dimensional vectors or arrays in order to

be able to integrate these features as inputs to a fully connected layer. Every component of a multi-

dimensional tensor that is flattened is effectively aligned or converted into a single component of

a one-dimensional array. For example, if the output of a convolution layer is a tensor of size

[batch_size, height, width, channels], then the flatten layer converts this tensor into a one-

dimensional array of sizes [batch_size, height * width * channels]. After the flatten layer, the

output vector will be forwarded to the fully connected layer for further processing in the

classification or regression process. In the fully connected layer, each neuron is connected to each

neuron in the previous layer, thus allowing the model to learn more complex relationships between

features that have been found in previous convoluted layers.

The final layer of a convolutional neural network (CNN) design, the fully connected layer

(FCL), is in charge of linking the output of the convolution and pooling layers to the output layer.

Each neuron in FCL receives input from every cell in the preceding layer as it is made up of many

neurons connecting to all of the neurons in the previous layer. Each neuron in the FCL receives

the output from the preceding layer, which is the result of convolution and pooling, as its input.

The output of each neuron in the FCL is generated using activation functions like ReLU, sigmoid,

 PROXIES VOL.6 NO.1, TAHUN 2022 65

or tanh, and each neuron has a distinct weight and bias. The output of all neurons in the FCL is

then combined and processed to produce the final output.

FCL is often used on image classification tasks, such as object recognition, where the output

of the CNN must be categorized into a specific class. FCL can learn more complex patterns from

previous output layers, thus improving the accuracy and performance of CNN models.

1.2.9 Transfer Learning of Dense Net 201 Architecture

Learning transfer is a method for helping current algorithms perform better with less data

and in less time. Although this method has several advantages, there are some circumstances that

need be taken into account in terms of learning transfer. Transfer learning can only be effective if

the starting and target problems are sufficiently comparable for the first training to be applicable.

In these circumstances, it is assumed that the source data and the target data are significantly

dissimilar to one another and thus the negative transfer problem arises. The model might actually

perform worse than if it hadn't been trained at all if the first round of training is too far off. Right

now, there are still no clear standards on what types of training are sufficiently related, or how this

should be measured.

Transfer learning is the ability to retain knowledge gained from addressing one problem and

apply it to a different one later on. With transfer learning, models are created utilizing prior

knowledge that demonstrate greater effectiveness and learn more quickly with less training data.

The best thing about transfer learning is that only a portion of the trained model needs to be learned

in order to use it. Transfer learning allows us to do so while saving time.

1.2.10 Hyperparameter Setting

A total of 3000 photos will be divide into 80% training and 20% validation portions, with

all images resized to a size of 50 by 50. To train the model using NFT images, we first collect a

dataset of NFT images from the above open-access resources along with their associated metadata,

including file size, format, and structure. Next, the images are pre-processed by resizing them to a

fixed size of 50 by 50 and standardizing their pixel values. For the model architecture, the author

used Dense Net architecture. The models are trained using the Adam optimizer with a learning rate

of 0.001 and a batch size of 64 over 30 epochs, along with other hyperparameters mentioned in

Table below.

Hyperparameter DenseNet201 Architecture

 PROXIES VOL.6 NO.1, TAHUN 2022 66

In Activation ReLU

Batch Size 64

Learning Rate 0.001

Training Data 80%

Validation Data 20%

Loss Function Categorical Cross Entropy

Optimizer Adam

Image Size (50, 50)

Epoch 30

 The hyperparameters must be set to optimal and equivalent values. In this study, we set all

the models being compared to the same hyperparameters, as shown in Table above. ReLU

activation was chosen because it is less computationally expensive and rectifies the vanishing

gradient problem, which is better than other activation functions such as tanh and sigmoid.

Furthermore, the default learning rate value of 0.001 was used in most Keras optimizers because

it is recommended for beginners. Based on the insights from Face Net embeddings, the author

selected a image size of (50, 50). This model was initially used for face clustering, verification,

and identification, and provides greater precision with only 128 bytes per face. The batch size of

64 was chosen because it is appropriate for the amount of data used in the study, and using a mini-

batch size that is a power of 2 is recommended.

The author chose to use the Adam optimizer, as it is a well-known deep-learning training

technique that uses exponentially weighted moving averages to manage the gradient’s momentum

and the second moment, also known as leaky averaging. This optimizer tracks the relative

prediction error of the loss function through a weighted average, making it more effective than the

standard stochastic gradient descent (SGD) technique, which ignores the effects of outliers.

Evaluation of the classification results of the intended architecture is performed in terms of

 PROXIES VOL.6 NO.1, TAHUN 2022 67

precision, recall, the F1-score, and classification accuracy. Among those parameters, precision is

the proportion of samples with optimistic predictions concerning the total number of correct

positive samples. The recall ratio of correctly predicted samples to the whole samples and the F1-

score are the precision and recall weight. Finally, classification accuracy is the total correct

predictions to the total number of samples.

 PROXIES VOL.6 NO.1, TAHUN 2022 68

1.3 IMPLEMENTATION AND RESULTS

1.3.1 Experiment Setup

In this project, the author uses a computer with Intel i5 Gen12 specifications, 16GB RAM,

Nvidia RTX 3060 GPU, and uses the Python3 programming language on Google Colab. With

these specifications can support the author in working on this project.

1.3.2 Implementation

In this chapter explains the implementation and testing of projects development about

Predicting Derivative NFT Using Convolutional Neural Network Algorithm. Below is the code of

the Convolutional Neural Network algorithms used to obtain results from the project developed.

The author's Colab notebook must first be mounted to the author's Google Drive account.

The author must run the following code in order to accomplish this. The author will then be

prompted to grant Colab access to their Google Drive account. When requested, input the

permission code after adhering to the instructions. Once the Google Drive has been mounted

successfully, the author can view their files from within their Colab notebook..

To understand an image dataset, the author first define the dataset directory into a variable.

Then each available class or label can be known by calling os.listdir.

 PROXIES VOL.6 NO.1, TAHUN 2022 69

 To find out the number of files present, the author use the len() function in each label

directory and sum them. To facilitate reading the data can also be visualized using the help of the

matplotlib library.

 Import the required library according to the program created by the author. Matplotlib,

numpy, and tensorflow are the main libraries and packages used in the following programs are

what they do:

1. NumPy is a library for the Python programming language that adds support for

sizable, multidimensional arrays and matrices as well as a substantial number of

high-level mathematical functions to work with these arrays.

2. Matplotlib, a charting package for Python and its extension for numerical

mathematics.

3. Tensorflow enables the creation of massively scalable neural networks. Tensorflow

has aided researchers with their tasks.

 PROXIES VOL.6 NO.1, TAHUN 2022 70

 Setting the seed, image size, and batch size. The number of samples that pass through the

neural network before the model parameters are updated is represented by the batch size. Each set

of samples undergoes a complete forward propagation and a complete backward propagation.

Resize the image to have less pixels so that processing would be simpler because there will be less

data to process. Random functions that generate random or random values need a seed to be

initialized.

 Next is to prepare the data before later going into modeling. This setup includes splitting

data into training and validation data. This data sharing is needed before it is later used to train the

model created and calculate the accuracy of the model.

 PROXIES VOL.6 NO.1, TAHUN 2022 71

 After dividing the data, the image used as the dataset will also be applied image

augmentation. This is applied based on the image data that has been displayed before. Image

augmentation is done here using Random Flip, Random Rotation, Random Zoom and Rescaling

layers on the image.

Using the code above, a special callback class called myCallback is defined. The Keras API

for TensorFlow uses this callback to track the status of training at each epoch. In particular, it

evaluates the model's accuracy after each epoch and halts training if the accuracy approaches or

exceeds 99%. At the conclusion of each epoch, a built-in callback method named on_epoch_end

is invoked. The training metrics (logs) and the current epoch number are supplied as inputs inside

of this procedure. 99% accuracy or more was attained by the model if the accuracy value in the

logs dictionary (logs.get('accuracy')) is greater than 0.99%. In that case, the message "Akurasi

mencapai 99%" is printed, and the attribute stop_training of the model is set to True. This will

stop the training process, preventing any further epochs from being executed.

 PROXIES VOL.6 NO.1, TAHUN 2022 72

To facilitate easy learning transfer, Keras offers the Dense Net course. The DenseNet-201

class with ImageNet weights was employed by the author. The author developed his base model

by adding the intentionally manufactured data, and the author rescaled the data set in accordance

with the Dense Net model that was used in feature extraction. The inventor of this model stopped

the weights in non-trainable layers from changing by setting the trainable property of this model

to False. Otherwise, the model's learnt information would be lost. The fully-connected layer at the

top of the network was left out because the author only used this model for feature extraction;

instead, the author provided the input shape and pooling. The author also added his own pooling

and dense layers.

 The code above trains a DenseNet201 model using the fit method from TensorFlow's Keras

API. It specifies the training data, the number of steps per epoch, the number of epochs to train

 PROXIES VOL.6 NO.1, TAHUN 2022 73

for, the validation data, and a custom callback. The train_data is used to train the model in 30

epochs, with 16 steps per epoch. After each epoch, the model's performance is evaluated on the

valid_data. Additionally, a custom callback named myCallback is included, which stops the

training if the accuracy reaches or exceeds 99%. The training history, including the loss and

accuracy values for each epoch, is stored in the densenet_hist variable..

After everything is done with model training, the results obtained from model training are

then evaluated using matplotlib where all training and validation results will be made graphs or

flows that will show the accuracy and loss of functions.

 PROXIES VOL.6 NO.1, TAHUN 2022 74

The code above creates a confusion matrix to evaluate the performance of the trained

DenseNet201 model. It first retrieves the true labels of a set of 100 data points by using the

test_data generator, which is created with the ImageDataGenerator and points to the same

directory as the training and validation data. The model's predictions are then obtained by applying

the model to the test_data generator. The argmax function is used to convert the predicted

probabilities into class labels. The confusion matrix is calculated using the true labels and predicted

labels, and it represents the number of samples that were classified correctly and incorrectly for

each class. Finally, the confusion matrix is visualized as a heatmap using the seaborn library, with

the class labels shown on the x and y axes.

 PROXIES VOL.6 NO.1, TAHUN 2022 75

The last step of making this program is to test the model by uploading one of the images

taken from the dataset and then the model that has been trained will predict whether the uploaded

image is correct or not according to its respective class. From there the author can obtain prediction

results whether appropriate or not with correct accuracy.

1.3.3 Results

In this chapter, the author will explain the results obtained from running the program. By

using transfer learning with DensNet201 Model, the author can find out the performance of the

model through derivative NFT image classification.

 PROXIES VOL.6 NO.1, TAHUN 2022 76

1.3.4 Model Custom Dense Net Architecture

The DenseNet201-based transfer learning model's architecture and parameters are described

in general in the model summary. A pre-trained DenseNet201 base model, an image data

augmentation layer, a dropout layer, a flatten layer, and three dense layers are among the layers

that make up the model. The model's input shape is set to (50, 50, 3), which represents RGB images

of 50x50 pixels. A 1920-dimensional output is generated by the base DenseNet201 model, which

has a total of 18,321,984 non-trainable parameters. By randomly changing a portion of input units

to 0 during training, the dropout layer aids in preventing overfitting. The output of the base model

is flattened by the flatten layer into a 1D tensor. Each of the subsequent dense layers' 64 units

employs the ReLU activation function, while the final dense layer's 3 units classify data using

softmax activation. The model has a total of 18,449,283 parameters, 127,299 of which can be

learned, while the rest parameters come from the DenseNet201 base model that has already been

trained.

 PROXIES VOL.6 NO.1, TAHUN 2022 77

1.3.5 Results of Model Accuracy

1.1.1.1.1.1.1.1.1 Accuracy of DenseNet201 Model with 50x50 Target Size without
Data Augmentation

Next is to train the data of the images on the dataset into the model with the fit model. In

performing a fit model used epoch = 30. Epoch means the number of times the network will see

the entire data set. It can be seen from the experiment conducted by the author that the model used

produces a fairly high accuracy value of 86.33%. By using this hyperparameter it took 29 second

to reach 1 epoch.

1.1.1.1.1.1.1.1.2 Accuracy of DenseNet201 Model with 50x50 Target Size using Data
Augmentation

In the second experiment the authors used the same hyperparameter but added augmentation

data to increase the variance. The accuracy of the model reaches 91% and the validation reaches

88%. This is quite good because the model is not overfitting. Getting to 1 epoch takes about 43

seconds on this model.

 PROXIES VOL.6 NO.1, TAHUN 2022 78

1.1.1.1.1.1.1.1.3 Accuracy of DenseNet Model with 150x150 Target Size without Data
Augmentation

In the third experiment the authors used the same hyperparameter but changed the target size

to 150x150 which was originally only 50x50, and without using data augmentation. In this

experiment, very good accuracy was obtained until it touched the limit or Callback, namely 99%

during training and 98 during validation. However, in this model it takes a relatively longer time

to reach 1 epoch, which is around 202 seconds. In this experiment only 16 epochs are needed to

get the highest accuracy.

 PROXIES VOL.6 NO.1, TAHUN 2022 79

1.1.1.1.1.1.1.1.4 Accuracy of DenseNet201 with 50x50 Targer Size With Data
Augmentation and using Sparse Categorical Cross Entropy Loss Function

In the fourth experiment the authors used the same hyperparameter but changed the target

size to 50x50, and using data augmentation. This experiment using different loss function, by using

sparse categorical cross entropy there is got a good accuracy. Getting to 1 epoch takes about 23

seconds on this model.

1.1.1.1.1.1.1.1.5 Accuracy of DenseNet201 with 50x50 Targer Size With Data
Augmentation and using 100 epoch

In the fifth experiment, the authors conducted 100 epoch training to prove whether the model

was overfitting or not if it was not given a callback function. It can be seen that the accuracy of

validation obtained is 93% and training is 94% with 22 seconds to complete 1 epoch.

 PROXIES VOL.6 NO.1, TAHUN 2022 80

1.3.6 Loss Function and Accuracy Charts

1.1.1.1.1.1.1.1.6 Accuracy and Loss using 50x50 Target Size without Data
Augmentation

After generating the expected accuracy in the first experiment, the model is next assessed by

showing graphs of the accuracy and loss functions using matplotlib. As can be seen in Figure

above, the accuracy graph keeps growing and produces a high enough level of accuracy, while the

loss function graph displays a decreasing flow, which indicates that prediction errors are also going

down. As a result, the accuracy will keep growing and producing a high level of accuracy. Overall,

despite the model's outstanding performance on the training set of data, the somewhat worse

performance on the validation set of data and the widening gap between the training and validation

accuracy raise concerns about the model's potential overfitting.

 PROXIES VOL.6 NO.1, TAHUN 2022 81

1.1.1.1.1.1.1.1.7 Accuracy and Loss using 50x50 Target Size using Data
Augmentation

In the second experiment, the authors used the same hyperparameter but added data

augmentation to the dataset. It can be seen in Figure above that the graph has experienced a

significant decrease in loss and does not have a large gap between training and validation accuracy.

 PROXIES VOL.6 NO.1, TAHUN 2022 82

1.1.1.1.1.1.1.1.8 Accuracy and Loss using 150x150 Target Size without Data
Augmentation

The author tries to utilize the same hyperparameter on the third experiment from Figure

above, but without data augmentation, and also adjusts the target_size to 150x150. This experiment

produced findings that were satisfactory. The model maintained a high level of accuracy

throughout the training procedure, according to the reported training results. Over the epochs, the

accuracy grew progressively until it reached 99% accuracy at epoch 16. This shows that the model

has become highly accurate in classifying the photos in the dataset. The common consensus is that

a model is operating well and producing correct predictions on both the training and validation

datasets when it achieves an accuracy of 99%, which is regarded as being very good. It is crucial

to remember that the performance of the model should not be judged exclusively on its accuracy.

Other measures and considerations, such as the particular task, the make-up of the dataset, and the

required level of performance, are significant.

 PROXIES VOL.6 NO.1, TAHUN 2022 83

1.1.1.1.1.1.1.1.9 Accuracy and Loss using 50x50 Target Size with Data
Augmentation and using Sparse Categorical Cross Entropy

In the fourth experiment, the authors used the same hyperparameter and added data

augmentation to the dataset. Using sparse categorical cross entropy it can be seen in Figure above

that the graph has experienced a significant decrease in loss but have a small gap than second

experiment.

 PROXIES VOL.6 NO.1, TAHUN 2022 84

1.1.1.1.1.1.1.1.10 Accuracy and Loss using 50x50 Target Size with Data
Augmentation with 100 epoch

In the fifth experiment, the authors tried to add epoch to find out if the model was overfitting

if it was not given a callback function. It can be seen that accuracy increases and loss decreases

despite having some gaps between the train and test charts.

1.4 CONFUSION MATRIX

The confusion matrix provides insights into the performance of the model across different

classes. It helps identify which classes are being misclassified and provides an overview of the

model's overall accuracy and errors.

 PROXIES VOL.6 NO.1, TAHUN 2022 85

1.1.1.1.1.1.1.1.11 Plot Confusion Matrix Result on First Experiment

The code above computes and visualizes the confusion matrix for the test dataset using a

trained DenseNet model. The test dataset consists of 3000 images belonging to 3 classes. The

confusion matrix is a square matrix that shows the counts of true positive, true negative, false

positive, and false negative predictions for each class. In the first experiment Figure 4.25, the

confusion matrix has a size of 3x3 because there are 3 classes. From the confusion matrix:

1. derivative_1: There are 775 photos that have been successfully identified as

derivative_1 (true positives), 189 images that have been incorrectly identified as

derivative_2 (false positives), and 36 images that have been incorrectly identified

as original (false positives).

2. derivative_2: There were no misclassifications among the 996 photos of

derivative_2 and they are all accurately identified as derivative_2 (true positives).

3. original: 769 photos have been accurately identified as original (true positives),

while 211 and 20 original images, respectively, have been misclassified as

derivative_1 and derivative_2 (false positives).

 PROXIES VOL.6 NO.1, TAHUN 2022 86

1.1.1.1.1.1.1.1.12 Plot Confusion Matrix Result on Second Experiment

In the second experiment Figure above, the confusion matrix also has a size of 3x3 because

there are 3 classes. From the confusion matrix:

1. derivative_1: There are 835 images correctly classified as derivative_1 (true

positives), while 141 images of derivative_1 are misclassified as derivative_2 (false

positives) and 24 images of derivative_1 are misclassified as original (false

positives).

2. derivative_2: All 995 images of derivative_2 are correctly classified as derivative_2

(true positives), while 5 images of derivative_2 are misclassified as derivative_1

(false positives) and with no misclassifications.

3. original: There are 772 images correctly classified as original (true positives), while

51 images of original are misclassified as derivative_1 (false positives) and 177

images of original are misclassified as derivative_2 (false positives).

 PROXIES VOL.6 NO.1, TAHUN 2022 87

1.1.1.1.1.1.1.1.13 Plot Confusion Matrix Result on Third Experiment

The given confusion matrix for the third experiment Figure above shows that the

classification model performed flawlessly. Three classes are represented by the 3x3 matrix. The

genuine labels are in each row, while the anticipated labels are in each column. In this instance,

the matrix demonstrates that there were 1000 examples for each class, and they were all correctly

categorized. No misclassifications were found in any of the classes. The final row also reveals that,

while all other predictions were accurate, four examples from class 2 were incorrectly assigned to

class 0. The fact that the vast majority of the predictions were correct shows that the model had an

overall accuracy rate of 99.6%. The model performs well and is very accurate, making it a

trustworthy classifier for the provided dataset.

 PROXIES VOL.6 NO.1, TAHUN 2022 88

1.1.1.1.1.1.1.1.14 Plot Confusion Matrix Result on Fourth Experiment

The presented confusion matrix relates to a three-class multi-class classification issue:

derivative_1 (class 0), derivative_2 (class 1), and original (class 2). Each row represents the true

class, while each column represents the predicted class, and the matrix indicates the performance

of the model.

1. derivative_1: 884 were correctly identified as derivative_1, 99 were incorrectly

categorized as derivative_2, and 17 examples were incorrectly categorized as

original. Class Derivative_1 has an accuracy of 88.4% (884/1000).

2. derivative_2: Of the 1000 instances of derivative_2, 991 were correctly identified

as derivative_2, six as derivative_1, and three as original. Class Derivative_2 has a

99.1% (991/1000) accuracy rate.

3. original: Of the 1000 original cases, 753 were correctly identified as original, 67 as

derivative_1, and 180 as derivative_2. The class original's accuracy is 75.3%

(753/1000).

 PROXIES VOL.6 NO.1, TAHUN 2022 89

1.1.1.1.1.1.1.1.15 Plot Confusion Matrix Result on Fifth Experiment using 100 Epoch

From the results of 100 epochs in the fifth experiment, a classification as shown in Figure

above was obtained. The following is an explanation of the Confusion Matrix plot above:

1. Class derivative_1 (class 0): The model successfully predicted 950 occurrences

(true positives) out of 1000 instances that belonged to class derivative_1. However,

it incorrectly labeled 21 instances of derivative_1 as original and 29 cases of

derivative_1 as derivative_2 (false negatives).

2. Class derivative_2 (class 1): The model accurately categorized 992 of the 1000

cases that belonged to class derivative_2 (true positives). It incorrectly categorized

6 instances of derivative_2 as derivative_1 (false negatives) and 2 instances of

derivative_2 as original (false negatives).

3. Original class (class 2): The model correctly predicted 873 of the 1000 occurrences

that made up the original class (true positives). 51 original cases were incorrectly

labeled as derivative_1 (false negatives), while 76 original instances were

incorrectly labeled as derivative_2 (false negatives).

 PROXIES VOL.6 NO.1, TAHUN 2022 90

In the fifth experiment, it can be seen that the machine is able to classify quite well by using

hyperparameters of 100 epochs and using categorical cross entropy. But it is still not good

compared to using callbacks and using a larger target size as in the third experiment.

Test Drive Model

1.1.1.1.1.1.1.1.16 Test Drive Model

The last step is to test the model that has been created using the image data used into a

dataset. To predict the results of the image, the author must upload one of the images in the dataset

used and then the model will begin to predict the image according to the label created or not. In

the picture above, it can be seen that with the resulting accuracy that the predicted image is in

accordance with the label.

1.4.1 Discussion

From the results of these studies there are several analyzes conducted by the author. in

collecting datasets the author must make it himself, because there is no site that provides NFT

image datasets in large quantities, and it is not possible to download NFT images one by one from

the marketplace. This iteration of the project uses 30 epochs so the process doesn't take long. In

30 epochs, the highest accuracy is 99% which stops at 16 epoch. By reducing the target size, it

also affects the training process to make it faster. Data augmentation in the dataset is also very

influential in this project to increase variations. This project focuses on classifying NFT derivative

images using transfer learning with the DenseNet201 model. With this model it is proven that

DensNet201 can classify NFT derivative images with fairly good accuracy.

 PROXIES VOL.6 NO.1, TAHUN 2022 91

1.5 CONCLUSION

In the last chapter, conclude the answer submitted in the problem formulation. From the

experiments that have been carried out by the author, it can be concluded that the performance of

the Dense Net-201 architecture is suitable for use in this topic, which is about predicting NFT

images with 3 labels used, namely original, derivative 1, and derivative 2. In addition to the

architecture used, hyperparameters also determine the level of accuracy produced such as batch

size, learning rate, epoch, and many more. In this experiment, the loss function Categorical Cross

Entropy is said to be very suitable than Sparse Categorical Cross Entropy, so that it affects the

accuracy produced because it uses 3 labels where this type of cross entropy requires labels to be

encoded as categories. From the results of experiments that have been carried out by the author, to

speed up the training process with small target sizes, it is recommended to use augmentation data

for increase the accuracy. However, to get even better accuracy, a larger target size is very

influential in increasing accuracy without having to add augmentation data. but by using a large

target size it will take a relatively long time to pass 1 epoch. And from the results of the fifth

experiment, using 100 epochs, it was proven that the engine is good enough to classify NFT

derivative images but still has some gaps between the train graph and the test on loss and accuracy

calculations.

Next research if you want to develop a project with predicting algorithm ensure the

architecture model and hyperparameters match the dataset used. Deep learning is all about

experimentation. You can improve the performance of your model by using a different pre-

processing method or by transfer learning with a completely different model. You can also make

major changes to your model by tampering with the hyperparameter tuning.

 PROXIES VOL.6 NO.1, TAHUN 2022 92

REFERENCES

[1] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-Fungible Token (NFT): Overview, Evaluation,

Opportunities and Challenges,” May 2021, [Online]. Available:

http://arxiv.org/abs/2105.07447

[2] N. Meuschke, C. Gondek, D. Seebacher, C. Breitinger, D. Keim, and B. Gipp, “An Adaptive

Image-based Plagiarism Detection Approach,” in Proceedings of the ACM/IEEE Joint

Conference on Digital Libraries, Institute of Electrical and Electronics Engineers Inc., May

2018, pp. 131–140. doi: 10.1145/3197026.3197042.

[3] Praveen Krishnan, Computer Vision – ECCV 2016, vol. 9905. in Lecture Notes in Computer

Science, vol. 9905. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-

46448-0.

[4] S. Appalaraju and V. Chaoji, “Image similarity using Deep CNN and Curriculum Learning.”

Accessed: Jul. 07, 2023. [Online]. Available: https://arxiv.org/abs/1709.08761

[5] E. Al-Thwaib, B. H. Hammo, and S. Yagi, “An academic Arabic corpus for plagiarism

detection: design, construction and experimentation,” International Journal of Educational

Technology in Higher Education, vol. 17, no. 1, Dec. 2020, doi: 10.1186/s41239-019-0174-

x.

[6] D. K. Mishra, R. Sheikh, S. Jain, and Institute of Electrical and Electronics Engineers,

Apparel Classification Using Convolutional NeuralNetworksEshwar. 2016. doi:

10.1109/ICTBIG.2016.7892641.

[7] N. Azahro Choirunisa, T. Karlita, and R. Asmara, “Deteksi Ras Kucing Menggunakan

Compound Model Scaling Convolutional Neural Network,” Technomedia Journal, vol. 6, no.

2, pp. 236–251, 2021, doi: 10.33050/tmj.v6i2.1704.

[8] H. Fonda, “Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks

(Cnn),” Jurnal Ilmu Komputer, vol. 9, no. 1, pp. 7–10, 2020, doi:

10.33060/jik/2020/vol9.iss1.144.

[9] A. P. Song, Q. Hu, X. H. Ding, X. Y. Di, and Z. H. Song, “Similar Face Recognition Using

the IE-CNN Model,” IEEE Access, vol. 8, pp. 45244–45253, 2020, doi:

10.1109/ACCESS.2020.2978938.

[10] T. Xie, K. Wang, R. Li, and X. Tang, “Visual robot relocalization based on multi-task CNN

and image-similarity strategy,” Sensors (Switzerland), vol. 20, no. 23, pp. 1–20, Dec. 2020,

doi: 10.3390/s20236943.

[11] K. E. Ak, J. H. Lim, J. Y. Tham, and A. A. Kassim, “Efficient multi-attribute similarity

learning towards attribute-based fashion search,” in Proceedings - 2018 IEEE Winter

Conference on Applications of Computer Vision, WACV 2018, Institute of Electrical and

Electronics Engineers Inc., May 2018, pp. 1671–1679. doi: 10.1109/WACV.2018.00186.

[12] A. T. Prihatno, N. Suryanto, S. Oh, T. T. H. Le, and H. Kim, “NFT Image Plagiarism Check

Using EfficientNet-Based Deep Neural Network with Triplet Semi-Hard Loss,” Applied

Sciences (Switzerland), vol. 13, no. 5, 2023, doi: 10.3390/app13053072.

