
 PROXIES VOL.5 NO.2, TAHUN 2022 86

MICROSERVICE AND MONOLITH PERFORMANCE
COMPARISON IN TRANSACTION APPLICATION

1Alexander Jason Lauwren, 2Y.b Dwi Setianto
1,2Program Studi Teknik Informatika Fakultas Ilmu Komputer,

Universitas Katolik Soegijapranata
2setianto@unika.ac.id

ABSTRACT

When it comes to building or developing an online system, developers need to choose what

kind of architecture will be used for the system. When facing the challenge, a developer needs the

most suitable architecture that most fit the case whether uses microservices or monolithic

architecture. Both architectures offer different benefits. Microservice recently become popular

because many large companies start migrating from monolith to microservices but on the other

hand. many organizations are still unfamiliar with microservices. Despite microservice providing

many benefits, it also has challenges. With that being said, it is common that many organizations

choose to stick with monolithic architecture since it was easier to maintain, develop, and deploy.

To find out the better architecture performance-wise, API provided by both application need to be

tested. The test was conducted by hitting the API several times with many threads concurrently.

The test result is latency and request time, success rate needs to be monitored as well since the

error occurred during load testing. With the data collected it could be shown which architecture

performs better. The test results obtained by testing both monolith and microservice with several

scenarios are quite unexpected. From the data, it turns out that for most features, average latency

from the monolith is better than microservice. Meanwhile in many other scenarios, microservice

edge monolith on the close gap in terms of success rate. The latency average number result for

microservice is slightly worse because there are more success requests and taking more time.

Keywords: Microservice, Monolith, Latency, Performance

INTRODUCTION

Background

In this modern era, the requirement for digitalized systems increasing rapidly. With the

Covid-19 Pandemic happening, many major living aspects tend to be online. Government and

companies attempt to cope with the change of lifestyle by providing the online system and or

application. This leads developers to create a high-performance system that is capable to serve the

demand. One of the most common answers used by developers is web application. Web

applications demanded to be agile, fast, and capable of handling such traffic.

When it comes to building or developing an online system, developers need to choose what

kind of architecture will be used for the system. When facing the challenge, a developer needs the

most suitable architecture that most fit the case whether uses microservices or monolithic

architecture. Both architectures offer different benefits. Microservice recently become popular

because many large companies start migrating from monolith to microservices but on the other

hand. many organizations are still unfamiliar with microservices. Despite microservice providing

 PROXIES VOL.5 NO.2, TAHUN 2022 87

many benefits, it also has challenges. With that being said, it is common that many organizations

choose to stick with monolithic architecture since it was easier to maintain, develop, and deploy.

In this research, microservices and monolithic performance are compared in a different

scenario. Both microservices and monolithic architecture build identical and contain identical

services. Even though both architectures use Go-Language as the programming language, the

framework used is different since the monolith use Echo as the framework and the microservice

uses Go-Kit as a microservice toolkit. Thus, this research tries to answer how does architecture

affect application performance, how does test design affect test result, and which architecture

performs better. The main objective of this research is to compare the performance between

microservices architecture and monolithic architecture in different scenarios. On the other hand,

this research aims to help developers decide which architecture is most suitable to the case faced.

LITERATURE STUDY

Gos and Zabierowski [1] compare microservice and monolithic architecture by building an

identical application coded using Java language. This journal compared both architectures by

testing their performance. Test conducted done by make thirty thousand requests at once. The

result shows that microservice edge monolithic on the performance aspect. However, both

architectures have their own advantage. This journal shows that microservices could perform better

when facing a massive number of requests. However, monolithic architecture is easier to deploy

and build rather than microservices. In this research, the test conducted will use JMeter to test the

API provided by both architectures.

Bucchiarone et al. [2] discuss migration from monolithic to microservices of Danske Bank’s

FX Core system. The article suggests that migrating from monolithic to microservices allows the

system to be more distributed, avoid overlapping responsibilities, and more scalability. Like most

of the migration processes, the monolith application spread into smaller entity then the process

begins with containerization. In this case, FX Core Microservice architecture uses Docker Swarm

Cluster, the step followed by automation which is done by deploying CI/CD pipeline. With Docker

Swarm, it allows orchestration which means failed service can be automatically restarted. For

integrating such a massive system which used to be a large monolithic, the huge number of services

need to communicate with each other by using RabbitMQ as the messaging system. The difference

between this journal and the project is in the number of services used, and the microservice pattern

used.

Desai [3] discuss the architecture of microservices and technology and functionality. This

article aims on explaining the benefit of microservice as an improvement and solution to

monolithic architecture disadvantage. The research focuses on adopting the microservices

architecture which offers scalability, flexibility, resilience, and autonomy. Besides that, the

researcher explained the tools and step needed to migrate to microservices. Although the benefit

is promising, migrating to microservices from the monolith is not as easy as it looks. The project

compares both microservices and monolithic performances.

 PROXIES VOL.5 NO.2, TAHUN 2022 88

To compare the performance between both architecture, testing is the core part. Nevedrov

[4] describe Apache JMeter is a tool used for testing web application which utilizes HTTP or FTP

servers. Apache JMeter is java based application. JMeter testing involves creating a loop and a

thread group. JMeter is capable to simulate load testing consisting of many concurrent threads

hitting the server. Jmeter testing results in form of latency and response time. The data testing later

could be used as a comparison or measurement of the system.

Since there are many forms of a web application, this research use REST API and JSON as

the data output or input. Neumann et al. [5] analyzed technical features being used in the web

services regarding REST principles. The principles consist of REST architecture, HTTP Use,

Input-Output formats support, Security mechanism, Usage policies, and documentation and

application use. This journal went through find 500 sites that provide web service API. These sites

were analyzed to understand the level of compliance with the REST principles. It concluded that

84% already use the REST URL scheme with 55% of them using JSON as output format.

Schmager et al. [6] describe Go as object-oriented programming built with a C-like syntax.

This journal evaluates Go syntax and idioms. Go syntax is an upgrade from Java and C. Not

requiring semicolons, initial capital for public encapsulation scheme are some positive traits from

Go Syntax making it is nice to write. But defining methods outside classes in Go is hard since it

requires the specific receiver’s name and types explicitly. On the idioms aspect, this journal

highlighted that go doesn’t have the equivalent of abstract classes, Go also doesn’t support

constructors like Java. But in spite all the setback, comma OK idioms is nice to have since methods

in go can return multiple values. Since Go is produced to code efficiency, this research use Go

language to build the application.

Sulander [7] discuss implementing a microservices approach on a fully open retail interface

in order to be able to sell public transport tickets. Microservices become very suitable since the

objective was to build scalable and modular systems to serve all functionalities. The researcher

also described microservices as the stem from the desire to build upgradeable and scalable

software. This research implement Domain Driven Design as its design pattern which allows the

researcher to encapsulate the business logic and capabilities throughout the system. The services

communicate with each other over APIs. The data storage in this journal uses Azure Cosmos DB

and uses a single database for every service. All traffic for the system using OpenMaaS happens

over HTTPS with a private endpoint so that security could be provided. On the other hand, the

project uses NGINX to serve the API, PostgreSQL to store the data.

Vionnet et al.[8] present Synapse, a semantic system for large-scale web service based on

microservice architecture. Synapse is designed to handle large data drives and integrated as a web

service. Synapse architecture uses microservice architecture in which the services have their own

databases which structure very differently. Synapse build to perform data integration at object level

so the system can cope with SQL and no SQL database. Synapse was developed using Ruby on

Rails as the framework to develop Synapse. Meanwhile, the project uses Go-Kit to develop the

microservices.

 PROXIES VOL.5 NO.2, TAHUN 2022 89

The project faced some challenges since building a microservice is quite complicated.

Kalske et al.[9] discuss challenges when migrating monolith systems to microservice architecture.

The journal stated that the transition from monolith architecture to microservice is not easy at all

since it requires time and effort. The challenge faced include many aspects such as technical

challenges and organizational challenges. The most common technical challenge is to split up the

services, logging, and testing since microservice is harder to test. Usually, the integration between

services to already existing technologies will be a problem as well. Besides the technical

challenges, there is an organizational challenge such as structure organization, task separation.

While some companies already have a big team it needs to spread the team to smaller teams while

migrating from monolith to microservices.

Villamizar et al.[10] analyze microservice patterns used by Amazon, Netflix, and LinkedIn

which deploy the large application on a cloud as small separated services. It is proven that

microservice architecture provides businesses the scalability, capability to handle a huge number

of users. Microservices allow companies to manage applications easier since every application is

separated as small services that run independently. With all benefit this journal said, building or

migrating to microservices have some challenges as well. The project proves that microservices

handle many users better than a monolith.

Al Debagy and Peter Martinek [11] test the performance of both microservices and monolith

applications. The result of the test scenario concluded as a monolith application is recommended

while building a small application and on the other hand, when the application will be used by a

large number of users, microservices is a perfect choice. The journal conducts the test by using

JHipster to generate a web application that consists of Spring Boot and Angular JS. Unlike the

journal, the project uses Go-Language to develop a web application.

Therefore, this project uses both monolith and microservices, the difference from other

research in this project aims to compare the performance between microservice and monolith while

given such scenario. Not only that, the programming language used, the design of microservices,

and database design are different. This project use Go-Language for both monolith and

microservice, the design used is based on the Go-Kit framework and Echo framework. Both were

used so that the project could serve on REST API. The database used for monolith is one database

for every application, and for microservice, a single database serves only one service.

ANALYSIS AND DESIGN

Analysis

When a developer starts building a web application, the process usually started with building

applications with monolithic architecture that contain many services. Monolith architecture chose

because it is easier to develop and maintain. While the application is still small, the monolith

application works perfectly with a small number of the team. The problem with monolith starts

surfacing when the application starts getting bigger, the number of developers increases, and

features growth. Since monolith offers no scalability, many companies chose to migrate to

 PROXIES VOL.5 NO.2, TAHUN 2022 90

microservices. When migrating to microservices, the first step done is to split the monolith services

into smaller services. The next step is to divide the data from a single database into separated

databases. The database separation is done so that the service could run independently. Even it

seems that microservice have so many advantages, they also have drawbacks.

To find out the better architecture performance-wise, API provided by both application need

to be tested. The test was conducted by hitting the API several times with many threads

concurrently. The test result is latency and request time, success rate needs to be monitored as well

since the error occurred during load testing. With the data collected it could be shown which

architecture performs better.

Design

Figure 1. Monolith Architecture Design

Monolith application design based on Go Echo framework where service separated as some

package. Endpoint part or usually coded on main package handle HTTP request and routing the

request. Usecase package handle the business logic. Every logic that goes through on the

application is handled on the use-case part. The repository package handles every communication

to the database. In order to achieve smaller latency, the repository part can’t have any business

logic outside query to the database. The application consists of many services such as merchant

service, user service, and transaction service. Every service has its own character and features.

Merchant services have basic create, update and delete or so-called CRUD features. User services

 PROXIES VOL.5 NO.2, TAHUN 2022 91

have login features that return JSON web tokens or are more popular as JWT for authorization

purposes. Transaction services have bulk insert and transaction logic features. Every service is

made different in order to compare architecture performance while handling such features.

Understanding how the application work, in general, is explained in figure 2.

Figure 2. Flowchart Monolith Application Handling Single HTTP Request

The monolith application starts with the user, in this case, could be the front end or directly

to the user making HTTP request to the server. When the user hits the API provided, the endpoint

 PROXIES VOL.5 NO.2, TAHUN 2022 92

layer calls the use-case function as requested. Usecase call repository function to make a query to

the shared database which consists of all the data stored by every service. Upon receiving a

response from the database, the repository returns the data to the use case function, use-case

function sends the data to the endpoint layer to encode data as JSON response. Meanwhile, it is

possible to face errors while the program is running. When a layer face error or even the database

sends error messages, the server will respond to the request with an error message. The service

count is finished when the server sends a return to the client-side whether it is a success or an error.

Microservice application designed following microservices principles where an application

runs independently, distributed, and scalable. As explained on figure 2, in a microservice

architecture, every service act independent while having their own port and database. Even though

all the services share the same relational database management system (RDBMS), all of the

services have their own unique database. Since the service is distributed, to make a fair test all the

services need to be accessible from one port. NGINX server used to reverse proxy services port

and combined them so that the services’ API listening on a single port.

On this project, a microservice was built based on Go Kit as a microservices toolkit. In the

Go Kit principles, services are separated into three main layers such as transport layer, endpoint

layer, and service layer. The transport layer is the part where transport processes are done since

some cases need more than HTTP API to transport. In this project, the transport layer handles

HTTP transport. The endpoint layer is often described as a controller where safety logic is coded.

Since the logic functions need to be exposed externally, the endpoint layer is the one that receives

the request and converts it to the struct needed. Not only that, but the endpoint layer is also the one

that calls the service layer to get the return struct. The service layer is where the business logic

lives. Monolith-wise, the service layer is the use-case where all the logic functions are coded.

The microservice application starts when the NGINX server receives a request from a client

as drawn in figure 3. Upon receiving a request, NGINX forwards the request to a suitable service.

While forwarding the request, NGINX errors may occur. If such scenarios happen, NGINX will

return an error such as 502 Bad Gateway. On the other hand, when the request success to be

forwarded, the transport layer of the service receives the request. From the transport layer, the

request will be decoded as a struct. While decoding the request body, it may occur that the struct

which is desired doesn’t match. If such a scenario happens, the service will return an error message

encoded by an endpoint as a response. When the struct match, the service layer will start the work

by calling the business logic function. It consists of a logic function and repository function. The

logic function will handle all the business logic while the repository handles the communication

to the database. Upon getting a response from the database, if no errors are faced, the service layer

returns the response to the endpoint layer so that the struct could be encoded to JSON format which

later will be used by the transport layer as a response to the client.

 PROXIES VOL.5 NO.2, TAHUN 2022 93

Figure 3. Left: Microservice Application Architecture, Right: Microservice Flowchart Handling Single

HTTP Request

 PROXIES VOL.5 NO.2, TAHUN 2022 94

Figure 4. Flowchart JMeter

In order to compare both architectures, testing software is needed. Since this project tests

HTTP server performance, Jmeter is the most suitable testing application. JMeter is capable to

make numerous requests concurrently hitting the server’s API. Upon getting a response from the

server, JMeter saves all of them and collects them so that the data could be calculated and displayed

as a performance report. The data used in this project are latency, success rate, and response time.

Figure 5. Testing Design Where JMeter, Services, Database, and Proxy Server (NGINX) Deployed On a

Single Device.

 PROXIES VOL.5 NO.2, TAHUN 2022 95

Figure 6. Testing Design Where JMeter Separated From Main Server

Figure 7. Testing Design Where Services Server, JMeter, NGINX Are Separated

In this project, there are several testing designs conducted. The first testing design is shown

in figure 5. The design where services, database, JMeter, and NGINX all deployed together in a

single device only. In the first design, every process is done locally, when JMeter tests the monolith

application, it creates multiple requests, those requests are sent to localhost where services and

their database are deployed. On the other hand, when testing microservice applications, to hit the

API through a single port, NGINX deployed. The NGINX server deployed on localhost as well.

This means that when JMeter creates a request to a microservice application the request is sent to

the NGINX server and after that NGINX hits the service’s API.

 The second testing design is where JMeter is separated on another device as shown in figure

6. In this design, a test conducted with JMeter with IP address 192.168.1.21 hit the local server on

IP address 192.168.1.20. When JMeter tests the monolith application, JMeter directly makes a

request to the monolith application’s API. Meanwhile, when testing microservices, JMeter makes

a request to the NGINX server port first before NGINX forwards the request to the responsible

service. NGINX server in the second design is deployed together with the services and database.

These devices can communicate through a local network and are routed using a router.

For the final testing design, not only JMeter, the NGINX proxy server is separated onto another

device as shown in figure 7. This mean, testing conducted using three devices which every device

have their responsibilities. The first device contains services and a database, this device act as the

service provider. Unlike the other design, the server device no longer contains an NGINX proxy

server. This first device runs with IP address 192.168.1.20. This address will be the address hit by

JMeter for the monolith application. The second device was deployed with the NGINX proxy

server. This device serves only a single purpose as a reverse proxy. The second device registered

 PROXIES VOL.5 NO.2, TAHUN 2022 96

with static IP on 192.168.1.22. The third device's sole purpose is to be the client. On this device,

JMeter was deployed for testing. This device registered on static IP address 192.168.1.21. When

testing the monolith application, JMeter on the third device directly sends the request to

192.168.1.20:10000. On the other hand, when testing the microservice application, JMeter sends

the request to the second device first, meaning the request is sent to NGINX server port which is

later forwarded to service API where located on the first device. NGINX on the second device role

is to forward the request from a client to service.

IMPLEMENTATION AND RESULT

Implementation

This project uses the Go programming language. In this project, the performance of monolith

architecture and microservice architecture is compared by load testing both architecture. Both

architectures contain the same amount of services. Those services are built as REST API services

where services communicate with the outside world using JSON format. In this project, both

architectures are load-tested using JMeter. Each service has its own unique features that make it

different from one another.

In monolith, all service connect to single database. This project use PostgreSQL as the database.

In order to minimalize latency, every runtime service call database only once so that there won’t

be too much connection. In Go, like in Java programming, the executable functions are all located

in the main function. Since connecting to the database should be secured and not exposed to the

outside world. In order to achieve that, all functions that connect to the database are separated into

a different package. Since there are 3 main services, there are 3 repositories. Package repository

handles all functions responsible to make queries.

Result

To find out which architecture is better, several testing scenarios were conducted. The first

testing scenario is to test all features from both architectures using the first testing design. In this

design, every service, database, NGINX, and JMeter are inside a single device. In this step, JMeter

hit both architecture’s API.

Table 1. Detailed Get Merchant Performance Data on Both Architecture

Features
Architecture

Monolith Microservice

Total Request 100 1000 5000 100 1000 5000

Avg. Latency 2 ms 1288 ms 641 ms 4 ms 2102 ms 1233 ms

Success Rate 100% 86.30% 24.40% 100% 85.80% 26.74%

Max Latency 15 ms 2909 ms 5399 ms 9 ms 4792 ms 10164 ms

From the test evidence, while handling the smaller and medium amount of requests, the monolith

application performs better while having average latency of 2ms. Microservice slightly edge the

monolith only when handling 5000 requests on success rate. This poor performance by

 PROXIES VOL.5 NO.2, TAHUN 2022 97

microservice could be caused by NGINX load time. This is proven from the terminal log where it

shows that there is approximately a 2-millisecond delay between Jmeter latency and the terminal

log latency. Meanwhile, the monolith application log shows that almost no delay between the

terminal and Jmeter data. In the next step, this project test the insert feature. In this step, JMeter

creates a POST HTTP request to the server in 1-second concurrently.

For POST HTTP requests, data need to be sent as a request body and written in JSON format as

shown on line 302. The suffix, on the data merchant name, is given by creating a counter variable

on JMeter. Below is the result of the test.

Table 2. Detailed Insert Merchant Performance Data on Both Architecture

Features
Architecture

Monolith Microservice

Total Request 100 1000 5000 100 1000 5000

Avg. Latency 6 ms 1688 ms 663 ms 5 ms 2477 ms 2101 ms

Success Rate 100% 65.20% 18.02% 100% 99.50% 25.84%

Max Latency 116 ms 2909 ms 5399 ms 101 ms 4498 ms 13004 ms

From the result above, there is an insane gap of latency between 100 hits and 1000 hits this could

be caused by device limitation. This means that creating 1000 threads simultaneously takes many

resources. To view more detailed results below is the data table

From the data in table 5.2, it could be seen that surprisingly microservice edge monolith on 1000

hits. The success rate is far higher on every hit. The max latency and the average on monolith seem

smaller but it caused by many failed requests. On the next step, the last merchant service feature,

the update feature is tested to find out which architecture perform better when handling update

request. The counter value will be replaced with a loop sequence number. Below is the result of

the test.

Table 3. Detailed Update Merchant Performance Data on Both Architecture

Features
Architecture

Monolith Microservice

Total Request 100 1000 5000 100 1000 5000

Avg. Latency 3 ms 1211 ms 497 ms 4 ms 2798 ms 1206 ms

Success Rate 100% 54.00% 14.56% 100% 79.90% 20.78%

Max Latency 10 ms 2909 ms 8255 ms 15 ms 5584 ms 10825 ms

From the table above, it could be concluded that even though monoliths have better performance,

the number of failed requests is also higher than microservice. On the other hand, in terms of

handling the higher request, microservice have a higher success rate. The max latency indicates

the highest latency thread accept for a single request. In terms of max latency, microservice has a

bit worse record.

 PROXIES VOL.5 NO.2, TAHUN 2022 98

 To test the application with higher complexity, in this step user service is tested to find out

which architecture handles authentication better. In user service, the register feature has password

encryption using the bcrypt algorithm. JMeter sends the request like below to the register’s API.

This email will be added with a number sequence from the counter variable. Both performance

tests result very poorly with an average latency of over ten thousand milliseconds. From the chart,

it seems that monolith performs better while handling 100 requests. But microservice handles

larger performance better. The amount of requests sent is lower than the previous test because the

number of errors while handling 1000 requests is already massive. To understand the test result

better, it can see in the below table.

Table 4. Detailed Register User Performance Data on Both Architecture

Features
Architecture

Monolith Microservice

Total Request 100 1000 100 1000

Avg. Latency 27492 ms 11512 ms 29362 ms 10526 ms

Success Rate 100% 23.20% 100% 13.60%

Max Latency 35241 ms 83125 ms 39607 ms 60003 ms

From the test result, unlike merchant testing results, microservice have a lower success rate during

handling a larger amount of register requests.

 In the next step, the login feature is tested. The login feature is the most complex because

it checks the data from the database, finds the match data, compares the password, and creates

JWT as a return.

Table 5. Detailed Login User Performance Data on Both Architecture

Features
Architecture

Monolith Microservice

Total Request 100 1000 100 1000

Avg. Latency 27702 ms 11742 ms 28597 ms 10041 ms

Success Rate 100% 22.50% 100% 13.10%

Max Latency 35241 ms 83125 ms 39607 ms 60003 ms

From the test result, both designs have a massive latency. This perhaps happened because the

service is complex and the service needs time to complete. But, the result shows that monolith

performs better with lower latency on 100 requests and a higher success rate on a larger amount

of requests.

 The last service that needs to be tested is the transaction service. Transaction service is a

rather less complex computation than user service. This service contains bulk insert as the key

feature. This request has an array attribute that will be inserted on a different table. For saving

resources used, the array will only contain two structs for each request. Below is the test result.

Table 6. Detailed Insert Bulk Transaction Performance Data on Both Architecture

 PROXIES VOL.5 NO.2, TAHUN 2022 99

Features
Architecture

Monolith Microservice

Total Request 100 1000 5000 100 1000 5000

Avg. Latency 98 ms 1790 ms 2134 ms 6 ms 1849 ms 739 ms

Success Rate 100% 50.40% 30.82% 100% 70.10% 20.00%

Max Latency 402 ms 6949 ms 8255 ms 33 ms 5739 ms 9803 ms

From the test result, it could be concluded that in case handling insert transaction, microservice

performs slightly better. But when it comes to handling a bigger amount of requests, the number

of failures arise in microservice since it only achieves a 20 percent success rate. Although it seems

that both architectures flop when handling a large number of requests, it can seem that in this

particular service, microservice is slightly better.

 The overall result of the test is worse than expected. There are too many errors on the test.

The error message could be seen in figure 8 below

Figure 8. Error Message From JMeter Failed Thread

When the message appears, it turns out that the server machine is still running. Also from

monitoring the terminal log, it appears that the server did not face any error. Meanwhile, NGINX

facing the same error as JMeter shows that the server is refusing the request.

From the observation above, moving JMeter to another device perhaps could be the solution.

In the second testing design, JMeter is separated onto another device since the JMeter user interface

and service already used a huge amount of RAM usage. For the second design, only the key

features were tested. This is done to find out whether device limitations have an aspect of the

failure rate. But moving the JMeter to another device means that the request has more steps from

client to server.

 PROXIES VOL.5 NO.2, TAHUN 2022 100

 The first comparison is between the Get Merchant feature. All the method are the same

but, in this test, JMeter sends a request from another device and hit the IP address of the server.

Below is the result of the test.

Table 7. Detailed Get Merchant Performance Data on Both Architecture

Features
Architecture

Monolith Microservice

Total Request 100 1000 5000 100 1000 5000

Avg. Latency 12 ms 4698 ms 4073 ms 15 ms 2343 ms 3823 ms

Success Rate 100% 72.70% 35.70% 100% 52.80% 10.04%

Max Latency 31 ms 6650ms 11115 ms 106 ms 5965 ms 10970 ms

From the test result above, it seems that the performance becomes poorer in the second design. In

success rate wise, for this get merchant feature alose worse. But it won’t be fair to only test one

feature. The heaviest service needs to be tested as well. In this step, the user login service is tested

using a second design. Below is the result of the test.

Table 8. Detailed Login User Performance Data on Both Architecture

Features
Architecture

Monolith Microservice

Total Request 100 1000 100 1000

Avg. Latency 29629 ms 13115 ms 273329 ms 10126 ms

Success Rate 100% 22.30% 100% 13.50%

Max Latency 37844 ms 88281 ms 42521 ms 60151 ms

Table 9. Detailed Insert Bulk Transaction Performance Data on Both Architecture

Features

Architecture

Monolith Microservice

Total Request 100 1000 5000 100 1000 5000

Avg. Latency 13 ms 5092 ms 7649 ms 21 ms 2304 ms 6523 ms

Success Rate 100% 52.30% 23.52% 100% 34.50% 20.14%

Max Latency 41 ms 11870 ms 22260 ms 123 ms 6859 ms 29908 ms

Because it seems that the microservice doesn’t live up to the expectation, to minimize ram usage

and in an attempt to improve the performance of microservice, NGINX is separated to another

device with an IP address located at 192.168.1.22. In this step, only microservice features are tested

since, in this third design, JMeter still hits monolith architecture directly. Just like all the tests done

before, Jmeter will hit the API provided by the server. But this time, unlike the second design,

 PROXIES VOL.5 NO.2, TAHUN 2022 101

JMeter will hit 192.168.1.22. The first test conducted is to see how is the performance of the third

design while handling merchant gets requests.

Table 10. Detailed Get Merchant Performance Data on Design Test 2 and Design Test 3

Features
Architecture

Design 2 Design 3

Total Request 100 1000 5000 100 1000 5000

Avg. Latency 15 ms 2343 ms 3823 ms 24 ms 2320 ms 7511 ms

Success Rate 100% 52.80% 10.04% 100% 99.30% 58.26%

Max Latency 106 ms 5965 ms 10970 ms 135 ms 4861 ms 17187 ms

Compared to the second design, the third design handle more requests poorly. But in terms of

success rate, somehow third design is edging the second design by a huge gap. To add more weight

to the comparison, the user login feature is tested, and below is the result from the test.

Table 11. Detailed Design 2 and Design 3 Login User Performance

Features
Architecture

Design 2 Design 3

Total Request 100 1000 100 1000

Avg. Latency 273329 ms 10126 ms 25002 ms 11084 ms

Success Rate 100% 13.50% 100% 13.20%

Max Latency 42521 ms 60151 ms 39539 ms 60209 ms

From the test result above, it seems that on small requests, the third design has the best performance

but it is the opposite with a larger amount of requests where the third design only gets a 13.20%

success rate. The final test is to compare the performance while handling the insert transaction.

Table 12. Detailed Design 2 and Design 3 Insert Bulk Transaction Performance

Features

Architecture

Design 2 Design 3

Total Request 100 1000 5000 100 1000 5000

Avg. Latency 21 ms 2304 ms 6523 ms 134 ms 4269 ms 9439 ms

Success Rate 100% 34.50% 20.14% 100% 57.70% 28.28%

Max Latency 123 ms 6859 ms 29908 ms 123 ms 6859 ms 29908 ms

From the test result above, the performance of the third design has become slower as the request

number increases. But in terms of success rate, the third design comes out victorious. When more

requests are successfully sent, the average latency will be higher. This concludes that separating

NGINX from another device is not boosting the performance but the success rate. The performance

is worse because the request sent by the client has to go through the router, the NGINX device,

and finally to the server.

 PROXIES VOL.5 NO.2, TAHUN 2022 102

Table 13. Overall Average Services Latency

Services
Average Latency Success Rate

Monolith Microservice Monolith Microservice

Merchant 663,22 ms 1325,56 ms 62,50% 70,95%

User 19612,00 ms 19640,50 ms 61,43% 56,68%

Transaction 1340,67 ms 864,67 ms 60,41% 63,37%

TOTAL

AVERAGE
7205,30 ms 7276,91 ms 61,44% 63,66%

To summarize all of the tests conducted, the average latency and success rate of every service

summed up to find out the overall average as seen in table 5.13. As seen in figure 5.14, in terms

of average latency for every service, the monolith has better latency with a 71.61 ms gap

difference. From figure 5.15, it could be seen that in terms of success rate, microservice slightly

edge monolith average success rate with 2.22%.

Table 14. Overall Average Latency and Success Rate Every Test Design

Services
Average Latency Success Rate

Design 1 Design 2 Design 3 Design 1 Design 2 Design 3

Merchant 1113,00 2060,33 3285,00 70,85 54,28 85,85

User 19319,00 18732,50 18043,00 56,80 56,75 56,60

Transaction 898,00 2949,33 4614,00 63,37 51,55 61,99

Total

Average
7110,00 7914,06 8647,33 63,67 54,19 68,15

From table 5.14, it could be seen that testing design is affecting performance for each service.

Figure 9. Testing Design Latency Comparison Chart

From figure 5.16 it could be concluded that testing design affects average latency where from the

chart design 1 has the best average latency and it becomes worse on design 2 and design 3.

7110
7914,06

8647,33

0

2000

4000

6000

8000

10000

Total Average Latency

Design 1 Design 2 Series 3

 PROXIES VOL.5 NO.2, TAHUN 2022 103

Figure 10. Testing Design Success Rate Comparison Chart

As seen in figure 5.17, the success rate is affected by the testing design. Unlike average latency,

the success rate is slightly better on design 3 where NGINX is separated.

CONCLUSION

The test results obtained by testing both monolith and microservice with several scenarios

are quite varied. From the testing, it could be concluded that the architecture affects the

performance and it shows that:

1. In Merchant service, the average latency gap between microservice and monolith is

662,34 ms, where monolith average latency is only half of microservice’s. In terms of

success rate, microservice slightly edge monolith with 8,45% or 515 more successful

request on microservice side. By looking at the number gap. It is clear that monolith is

better for merchant service

2. In User service, monolith is better with edging microservice on both average latency

and success rate with 28,5 ms lower latency and 4,75% more success rate.

3. In Transaction service, unlike user service, microservice performs better with having

494 ms lower latency and better success rate at 2,96%.

By looking at the overall testing data, the average latency from the monolith is better than the

microservice by a 71.61 ms gap. Meanwhile, in terms of success rate, the data shows that

microservices average success rate edge monolith with a small gap of 2.22 percentage. The latency

average number result for microservice is slightly worse because there are more success requests

and taking more time. The usage of the API gateway also affects the latency because the request

has to go through NGINX before arriving on the server.

By changing the testing design, it could be concluded that the testing design is affecting the

service’s performance and it shows that:

63,67
54,19

68,15

0

20

40

60

80

Success Rate

Design 1 Design 2 Design 3

 PROXIES VOL.5 NO.2, TAHUN 2022 104

1. Merchant service have the best latency on design 1 but the best success rate average on

design 3 with 15% gap with the first one. But the latency on the third testing design is

3 times higher than first testing design

2. User service performs best on design 3 since it has lowest latency, eventhough the

average success rate is worse but the gap only 0,15%.

3. Transaction service performs best on design 1 like merchant service since it has the

lowest latency average and highest success rate.

From the overall data it shows that separating JMETER from another device makes the

latency worse by 804.06 ms. But separating NGINX to the third device also did not make the

latency better. It is shown that it has 1537,33 ms higher average latency than the first testing design.

The average latency become worse because the request took longer times since the server is not in

the local environment anymore. Meanwhile, in terms of success rate, from the testing data, the

success rate on design 2 is slightly worse than design 1 with a 9.48% gap. On the other hand,

testing design 3 has a slightly better success rate average with a 4.48% gap from design 1.

From the data it appears that there is no absolute better architecture. It could be concluded

that every architecture has its own advantages. But from overall if the service is more loaded, need

high chance of success rate, microservice is a better choice. If the service is light weight and need

faster response, monolith is the option. In further research, the future researcher could use a better

device for the server and testing. Also, the microservice could be made more complex by adding

workers and increasing the number of features. It is also possible to use various database machines

outside PostgreSQL with using various RDBMS for microservice.

REFERENCES

[1] K. Gos and W. Zabierowski, “The Comparison of Microservice and Monolithic

Architecture,” in 2020 IEEE XVIth International Conference on the Perspective Technologies

and Methods in MEMS Design (MEMSTECH), Lviv, Ukraine, Apr. 2020, pp. 150–153. doi:

10.1109/MEMSTECH49584.2020.9109514.

[2] A. Bucchiarone et al., “From Monolithic to Microservices,” IEEE SOFTWARE, p. 6.

[3] V. Desai, “Microservices: Architecture and Technologies,” IJRASET, vol. 8, no. 10, pp. 679–

686, Oct. 2020, doi: 10.22214/ijraset.2020.31979.

[4] D. Nevedrov, “Using JMeter to Performance Test Web Services,” p. 11.

[5] A. Neumann, N. Laranjeiro, and J. Bernardino, “An Analysis of Public REST Web Service

APIs,” IEEE Trans. Serv. Comput., vol. 14, no. 4, pp. 957–970, Jul. 2021, doi:

10.1109/TSC.2018.2847344.

[6] F. Schmager, N. Cameron, and J. Noble, “GoHotDraw: evaluating the Go programming

language with design patterns,” in Evaluation and Usability of Programming Languages and

Tools on - PLATEAU ’10, Reno, Nevada, 2010, pp. 1–6. doi: 10.1145/1937117.1937127.

[7] S. Sulander, “Microservices Architecture in Open Retail Interface for Public Transport

Tickets,” Distributed systems, p. 60.

 PROXIES VOL.5 NO.2, TAHUN 2022 105

[8] N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and J. Nieh, “Synapse: a microservices

architecture for heterogeneous-database web applications,” in Proceedings of the Tenth

European Conference on Computer Systems, Bordeaux France, Apr. 2015, pp. 1–16. doi:

10.1145/2741948.2741975.

[9] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges When Moving from Monolith to

Microservice Architecture,” in Current Trends in Web Engineering, vol. 10544, I. Garrigós

and M. Wimmer, Eds. Cham: Springer International Publishing, 2018, pp. 32–47. doi:

10.1007/978-3-319-74433-9_3.

[10] M. Villamizar et al., “Evaluating the monolithic and the microservice architecture pattern to

deploy web applications in the cloud,” in 2015 10th Computing Colombian Conference

(10CCC), Bogota, Colombia, Sep. 2015, pp. 583–590. doi:

10.1109/ColumbianCC.2015.7333476.

[11] O. Al-Debagy and P. Martinek, “A Comparative Review of Microservices and Monolithic

Architectures,” in 2018 IEEE 18th International Symposium on Computational Intelligence

and Informatics (CINTI), Budapest, Hungary, Nov. 2018, pp. 000149–000154. doi:

10.1109/CINTI.2018.8928192.

