Sistem Pendukung Pengambilan Keputusan Kesesuaian Beasiswa Menggunakan Naive Bayes

Tan, Yohanes Christianto Aryo Wicaksono, YB Dwi Setianto

Abstract


Until now there are no system that helps determine candidates who are eligible to receive the Sandjojo Foundation scholarship at Soegijapranata Catholic University. Therefore, scholarship recipients are sometimes not on target. This research can help solve problems by using the Naive Bayes algorithm as a medium for decision makers with criteria such as based on the student's GPA, the total income of parents, and must be an active student in the organization. Using previous registrant data, the Naive Bayes algorithm can study the data for each of the criteria entered to determine whether applicants qualify or not to receive scholarships from the Sandjojo Foundation. This research was made using a web-based application and has been tested four (4) times with a variety of test and training data, with an accuracy of around 50% to 65% and a time of less than three (3) seconds..

Keywords


naive bayes, scholarship, decission support system.

Full Text:

PDF

References


Dahri, D., Agus, F., & Khairina, D. M. (2017). Metode Naive Bayes Untuk Penentuan Penerima Beasiswa Bidikmisi Universitas Mulawarman. Jurnal Informatika Mulawarman, (online), 11(2), 29-36. (http://e-journals.unmul.ac.id, diakses 12 September 2018).

Furqan, M., Wibowo, S. H., Kom, S., & Kom, M. SISTEM PERSEDIAAN OBAT PADA PUSKESMAS MENGGUNAKAN METODE NAÏVE BAYES (STUDI KASUS PUSKESMAS TALANG TINGGI SELUMA), Jurnal Teknik Informatika Universitas Muhamadiyah Bengkulu, (online), 1-10. (https://caridokumen.com/, diakses 14 September 2018).

Jananto, A. (2013). Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa. Dinamik-Jurnal Teknologi Informasi, (online), 18(1), 9-16. (https://www.unisbank.ac.id, diakses 14 September 2018)

Jatmikanto, T. (2016). Implementasi Algoritma Naïve Bayes dalam Proses Analisis Efisiensi Jasa Servis Bengkel Daihatsu Cabang Salatiga (Doctoral dissertation, Program Studi Teknik Informatika FTI-UKSW), (online), (http://repository.uksw.edu, diakses 17 September 2018).

Manalu, E., Sianturi, F. A., & Manalu, M. R. (2017). Penerapan Algoritma Naive Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan dan Jumlah Pemesanan pada Cv. Papadan Mama Pastries. Jurnal Mantik Penusa, (online), 1(2), 16-21. (http://e-jurnal.pelitanusantara.ac.id, diakses 10 September 2018).

Putri, M. P., & Al Irsyadi, F. Y. (2018). Sistem Prediksi Kesiapan Siswa SMP Dalam Menghadapi Ujian Nasional Menggunakan Metode Naïve Bayes. e-Jurnal Mitra Pendidikan, (online), 2(5), 469-481. (https://e-jurnalmitrapendidikan.com, diakses 10 September 2018).

Via, Y. V., Nugroho, B., & Syafrizal, A. (2015). Sistem Pendukung Keputusan Klasifikasi Tingkat Keganasan Kanker Payudara dengan Metode Naive Bayes Classifier. SCAN-Jurnal Teknologi Informasi dan Komunikasi, (online), 10(2), 63-68. (http://www.ejournal.upnjatim.ac.id, diakses 10 September 2018).

Wasiati, H., & Wijayanti, D. (2014). Sistem Pendukung Keputusan Penentuan Kelayakan Calon Tenaga Kerja Indonesia Menggunakan Metode Naive Bayes (Studi Kasus: Di PT Karyatama Mitra Sejati Yogyakarta). IJNS- Indonesian Journal on Networking and Security, (online), 3(2), 45-51. (http://ijns.org, diakses 8 September 2018).




DOI: https://doi.org/10.24167/praxis.v2i2.2624

View My Stats | ISSN 2622-9137 (media online)