Thermal Comfort Identification of Traditional Bugis House in Humid Tropical Climate

Sahabuddin Latif, Baharuddin Hamzah, Ramli Rahim, Rosady Mulyadi

Abstract


This study aims to determine the thermal comfort conditions in the interior of traditional Bugis houses in South Sulawesi. This phase measured 18 (eighteen) houses by collecting data on 2 (two) main variables of room thermal comfort, namely air temperature and relative humidity. The recording time starts from 08.00 to 16.00 WITA. Observation made to collect room geometry data, building orientation, roof slope, and material used. Measuring instruments are placed in the living room throughout the room. The analysis carried out on the measurement data is then correlated with the observation. The results show that the average outside temperature above the thermal comfort standard is around 32.0 to 37.4℃ from morning to afternoon, the maximum temperature reaching 41.7℃ occurs around 13.00 to 14.00 WITA and the minimum temperature is 28.2℃ only occurs in the morning. Air humidity average is relatively fair in the thermal comfort zone between 42.8 to 69.8%. Material gives the most dominant influence on heat induction from the outside environment to the interior space. The orientation of the house found in North-South is hotter, the roof with a double slope is hotter, and the lower the ceiling is more hot.

Keywords


micro climate, thermal comfort, natural ventilation, traditional bugis house

Full Text:

PDF

References


Adam, Z., Yamanaka, T., & Kotani, H. 2002. Mathematical model and experimental study of airflow in solar chimneys. Makalah disajikan dalam Proc. 8th International Conference on Air Distribution in Rooms (ROOMVENT 2002).

Adam, Z., Yamanaka, T., & Kotani, H. 2004. Simulation study on solar assisted ventilation systems. Journal of Environmental Engineering, Architectural Institute of Japan (AIJ): 19-26

Al-Obaidi, K.M., Ismail, M.A., & Rahman, A.M.A. 2016. Effective use of hybrid turbine ventilator to improve thermal performance in Malaysian tropical houses. Building Services Engineering Research and Technology: 0143624416648470

Al Yacouby, A., Khamidi, M.F., Nuruddin, M.F., Idrus, A., Farhan, S.A., & Razali, A.E. 2011. A review on thermal performance of roofing materials in Malaysia. Makalah disajikan dalam Sustainable Building and Infrastructure Systems: Our Future Today.

Biwole, P., Woloszyn, M., & Pompeo, C. 2008. Heat transfers in a double-skin roof ventilated by natural convection in summer time. Energy and Buildings, 40 (8): 1487-1497

BPS. 2008. BPS Provinsi Sulawesi Selatan. BPS Propinsi Sulawesi Selatan: Makassar.

BSN. 2001. Tata Cara Perancangan Sistem Ventilasi dan Pengkondisian Udara pada Bangunan Gedung. Badan Standardisasi Nasional: Jakarta.

Febrina, D., Hamzah, B., & Mulyadi, R. 2018. Pengaruh Elemen Fasad Terhadap Laju Pergerakan Aliran Udara Di Ruang Kelas. Jurnal Arsitektur PURWARUPA, 1 (2): 19-28

Feriadi, H. 2004. Thermal comfort for naturally ventilated residential buildings in tropical climate. A Thesis Submitted For The Degree Of Doctor Of Philosophy Department Of Building National University Of Singapore.

Feriadi, H., & Wong, N.H. 2004. Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings, 36 (7): 614-626. DOI:10.1016/j.enbuild.2004.01.011

GBCI. 2014. GREENSHIP Home Version 1.0. Green Building Council Indonesia: Jakarta.

Givoni, B. 1994. Passive low energy cooling of buildings. John Wiley & Sons.

Gratia, E., & De Herde, A. 2004a. How to use natural ventilation to cool narrow office buildings. Building and Environment, 39 (10): 1157-1170

Gratia, E., & De Herde, A. 2004b. Natural cooling strategies efficiency in an office building with a double-skin façade. Energy and Buildings, 36 (11): 1139-1152

Hamzah, B., Gou, Z., Mulyadi, R., & Amin, S.J.B. 2018. Thermal Comfort Analyses of Secondary School Students in the Tropics. 8 (4): 56

Hamzah, B., Rahim, R., Ishak, M., & Latif, S. 2017. Kinerja Sistem Ventilasi Alami Ruang Kuliah. Jurnal Lingkungan Binaan Indonesia, 10: 51-57

Hien, W.N., Poh, L.K., & Feriadi, H. 2000. The use of performance-based simulation tools for building design and evaluation—a Singapore perspective. Building Environment International, 35 (8): 709-736

Infoana.com. (2018). 35 Nama Rumah Adat Tradisional di Indonesia Beserta Gambarnya. (https://infoana.com/rumah-adat-di-indonesia/, diakses 24 September 2018).

Ishak, M., Hamzah, B., Gou, Z., Rahim, R., & Latif, S. 2018. Thermal Performance of Naturally Ventilated Classroom in the Faculty of Engineering Hasanuddin University, Gowa Campus. International Journal of Engineering Science Applications, 5 (1): 23-36

Jamaludin, N., Mohammed, N.I., Khamidi, M.F., & Wahab, S.N.A. 2015. Thermal comfort of residential building in Malaysia at different micro-climates. Makalah disajikan dalam Procedia-Social and Behavioral Sciences.

Larasati, D., & Mochtar, S. 2013. Application of bioclimatic parameter as sustainability approach on multi-story building design in tropical area. Makalah disajikan dalam The 3rd International Conference on Sustainable Future for Human Security SUSTAIN 2012.

Latif, S., Hamzah, B., & Ihsan. 2016. Pengaliran Udara untuk Kenyamanan Termal Ruang Kelas dengan Metode Simulasi Computational Fluid Dynamics. Sinektika, 14 (2): 209-216

Lippsmeier, G. 1994. Tropenbau Building in the Tropics: Bangunan Tropis. (Penerjemah, S. Nasution ed. ke-2). Penerbit Erlangga: Jakarta.

LPMB-PU, Y. 1993. Standar Tata Cara Perencanaan Teknis Konservasi energi pada Bangunan Gedung (SK SNI T-14-1993-03). Bandung: Yayasan Lembaga Penelitian Masalah Bangunan

Mulyadi, R., Yoon, G., & Okumiya, M. 2010. Performance of Double-Glassed Façade in Reducing Heat Load: A Study on Simulated Building Based on Indonesia Condition.

Mulyadi, R., Yoon, G., & Okumiya, M. 2012. Study on Solar Heat Gain and Thermal Transmittance of East- And West-Facing Double-Skin Facade in Hot and Humid Climate. AIJ Journal Of Technology, 18 (40): 989-994

Ong, K.S. 2011. Temperature reduction in attic and ceiling via insulation of several passive roof designs. Energy Conversion and Management, 52 (6): 2405-2411

Phiraphat, S., Prommas, R., & Puangsombut, W. 2017. Experimental study of natural convection in PV roof solar collector. International Communications in Heat and Mass Transfer, 89: 31-38

Prasojo, A., Sulistyo, J., & Listyanto, T. Konduktivitas Panas Empat Jenis Kayu Dalam Kondisi Kadar Air Yang Berbeda.

Prianto, E. 2007. Rumah Tropis Hemat Energi Bentuk Keperdulian Global Warming. Jurnal Pembangunan Kota Semarang RIPTEK, 1 (1): 1-10

Rahim, R. 2004. Analisa luminansi langit dengan metode rasio awan. DIMENSI (Journal of Architecture and Built Environment), 28 (2)

Rahim, R., & Mulyadi, R. 2004. Classification of Daylight and Radiation Data Into Three Sky Conditions by Cloud Ratio and Sunshine Duration. Energy and Buildings, 36 (7): 660-666

Ratanachotinun, J., Kasayapanand, N., Hirunlabh, J., Visitsak, S., Teekasap, S., & Khedari, J. 2015. Technical and economical assessment of energy-saving roof and wall construction in Thailand. Journal of the Chinese Institute of Engineers: 1-11

Roslan, Q., Ibrahim, S.H., Affandi, R., Nawi, M.N.M., & Baharun, A. 2015. A literature review on the improvement strategies of passive design for the roofing system of the modern house in a hot and humid climate region. Frontiers of Architectural Research

Selparia, E., Ginting, M., & Syech, R. 2015. Pembuatan Dan Pengujian Alat Untuk Menentukan Konduktivitas Plat Seng, Multiroof Dan Asbes. Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam, 2 (1): 191-197

Soegijanto. 1999. Bangunan di Indonesia dengan iklim tropis lembab ditinjau dari aspek fisika bangunan. Direktorat Jenderal Pendidikan Tinggi, Departemen Pendidikan dan Kebudayaan.

Sugini, S. 2004. Pemaknaan Istilah-Istilah Kualitas Kenyamanan Thermal Ruang Dalam Kaitan Dengan Variabel Iklim Ruang. Jurnal Logika, 1 (2)

Susanti, L., Homma, H., Matsumoto, H., Suzuki, Y., & Shimizu, M. 2008. A laboratory experiment on natural ventilation through a roof cavity for reduction of solar heat gain. Energy and Buildings, 40 (12): 2196-2206

Talarosha, B. 2005. Menciptakan Kenyamanan Thermal dalam Bangunan. Jurnal Sistem Teknik Industri, 6 (3): 148-158

Tan, A.Y.K., & Wong, N.H. 2014. Influences of ambient air speed and internal heat load on the performance of solar chimney in the tropics. solar energy, 102: 116-125

Tantasavasdi, C., Srebric, J., & Chen, Q. 2001. Natural ventilation design for houses in Thailand. Energy and Buildings, 33 (8): 815-824

Tinker, J., Ibrahim, S., & Ghisi, E. 2004. An evaluation of thermal comfort in typical modern low-income housing in Malaysia. Proceedings of the Buildings IX: Thermal Performance of Exterior Envelopes of Whole Buildings, ASHRAE

Wuryanti, S., & Iriani, P. 2018. Investigasi Experimental Konduktivitas Panas pada Berbagai Logam. Jurnal Ilmu dan Inovasi Fisika, 2 (1)

Zhou, J., & Chen, Y. 2010. A review on applying ventilated double-skin facade to buildings in hot-summer and cold-winter zone in China. Renewable and Sustainable Energy Reviews, 14 (4): 1321-1328




DOI: https://doi.org/10.24167/tesa.v17i1.1803

ISSN 1410-6094 (Print) | ISSN 2460-6367 (Media Online) | View My Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.